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Newton-Cotes Integration
Formulas

The Newton-Cotes formulas are the most common numerical integration schemes. They
are based on the strategy of replacing a complicated function or tabulated data with an
approximating function that is easy to integrate:

b b
I=f f(x)de/ u(x)dx (21.1)

where f,(x) = a polynomial of the form

fu@) =ap+aix + -+ a1 X" +a,x"
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THE TRAPEZOIDAL RULE

The trapezoidal rule is the first of the Newton-Cotes closed integration formulas. It corre-
sponds to the case where the polynomial in Eq. (21.1) is first-order:

b b
I=/ f(x)de/ fi(x)dx

Recall from Chap. 18 that a straight line can be represented as [Eq. (18.2)]

@) = fla)+ —/—— 1 ) f(a) —a) (21.2)

The area under this straight line is an estimate of the integral of f(x) between the limits «
and b:

b
1=f [f(a)+f(b;+f(a)(x—a)]dx

The result of the integration (see Box 21.1 for details) is

which is called the rrapezoidal rule.
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(o ingle-segment (b) Muliple-segment

FUNCTION Trep (h, f0, 1) FUNCTION Trapm (h, n, f)
Trap=h«(f0+ £1)2 sum = fy
£AD Trap DFRi=1n-1
sum = sum + 2 # f;
£ 0
sum = sum + f,
Trapn = h 4 sum/Z
W0 Trapm
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SIMPSON’S RULES

Simpson’s 1/3 Rule

Simpson’s 1/3 rule results when a second-order interpolating polynomial is substituted
into Eq. (21.1):

b b
I=f ](x)dng frlx)dx

If a and b are designated as xp and x; and f(x) is represented by a second-order Lagrange
polynomial [Eq. (18.23)], the integral becomes

2= x)(x —x2) (x —x0)(x —x2)
I'=
/xn [(xo = x1)(xo — x2) Fl+ (x) = x0)(x) — Xz)f(xl)
(x = xp)(x — x1)
(x2 = x0)(x2 — x1)

f(Xz)] dx

h
= i'lf(-l'ﬂ) +4flx)) + flxa)]
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The Multiple-Application Simpson’s 1/3 Rule

fi=

n
The total integral can be represented as
X2 X4 Xn
l=] f(x)dx+/ f)ydx + -+ flx)dx
X x Xn-2

Substituting Simpson’s 1/3 rule for the individual integral yields

1~ Sxo) + 4/(64‘1) + flx) 190 flo) + 4f2X3) + flxq)

g popln 4f(6x,._x) + flx)

or, combining terms and using Eq. (21.17),
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21.2.3 Simpson’s 3/8 Rule

In a similar manner to the derivation of the trapezoidal and Simpson’s 1/3 rule, a third-
order Lagrange polynomial can be fit to four points and integrated:

b b
1=/ f(x)dxzf f3(x)dx

to yield
3
Fis -s—lf(xo) +3f(x1) + 3 f(x2) + f(x3)]

where i = (b — a)/3. This equation is called Simpson’s 3 /8 rule because h is multiplied by
3/8. It is the third Newton-Cotes closed integration formula. The 3/8 rule can also be ex-
pressed in the form of Eq. (21.5):

(21.20)
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(a)

FUNCTION Simp13 (h, f0, f1, f2)
Simpl3 = 2«hs (fO+4+f1+f2) 1 6

END Simpl3

(b)

FUNCTION Simp38 (h, f0, f1, f2, f3)
Simp38 = 3shx (fO+3*(f1+12)+f3) / 8

END Simp 38

(c)
FUNCTION Simpl13m (h, n, f)
sum = f(0)
DOFOR i =1, n-2, 2
sum = sum + 4 * f; + 2 * fiug
END DO
sum = sum + 4 * f,.p + f,
Simp13m = h % sum [ 3
END Simp13m

MULTIPLE INTEGRALS

(d)
FUNCTION SimplInt(a,b,n, f)
h=(b—-a)/n
IF n =1 THEN
sum = Trap(h, f,_y, f)
ELSE

m=n
odd=n/2—INT(n/ 2)
IF odd > 0 AND n > 1 THEN

sum = sum+Simp38(h, 3. Ta=z, Fu1. fo)

=n—-3
END IF
IF m> 1 THEN
sum = sum + Simp13m(h,m, f)
END IF
END IF
SimpInt = sum
END SimpInt |

Multiple integrals are widely used in engineering. For example, a general equation to com-
pute the average of a two-dimensional function can be written as (recall Eq. PT6.4)

[ (/”bf(X-y)dx) dy

d—c)b—a)

5

The numerator is called a double integral.
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The techniques discussed in this chapter (and the following chapter) can be readily
employed to evaluate multiple integrals. A simple example would be to take the double in-
tegral of a function over a rectangular area (Fig. 21.16).

Recall from calculus that such integrals can be computed as iterated integrals

d/ pb by pd
f ( f flx, y)dx) dy= / ( f flx, y)dy) dx (21.24)

Thus, the integral in one of the dimensions is evaluated first. The result of this first inte-
gration is integrated in the second dimension. Equation (21.24) states that the order of in-
tegration is not important,

A numerical double integral would be based on the same idea. First, methods like the
multiple-segment trapezoidal or Simpson’s rule would be applied in the first dimension
with each value of the second dimension held constant. Then the method would be applied
to integrate the second dimension. The approach is illustrated in the following example.

http://www.pedram-payvandy.com 13

Using Double Integral to Determine Average Temperature

Problem Statement. Suppose that the temperature of a rectangular heated plate is de-
scribed by the following function:

Tx.y)=2xy+2x —x2=2y>+72

If the plate is 8-m long (x dimension) and 6-m wide (y dimension), compute the average
temperature.
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Integration of Equations
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() = 0.2 + 25x — 200:2 + 675x% — 900x* + 400x°.
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ROMBERG INTEGRATION

The estimate and error associated with a multiple-application trapezoidal rule can be
represented generally as

I = I(h) + E(h)

where I = the exact value of the integral, I(h) = the approximation from an n-segment
application of the trapezoidal rule with step size h = (b — a)/n. and E(h) = the truncation
error. If we make two separate estimates using step sizes of & and &3 and have exact values
for the error,

I(hy) + E(hy) = I(hy) + E(h)) (22.1)
Now recall that the error of the multiple-application trapezoidal rule can be represented
approximately by Eq. (21.13) [withn = (b — a)/ h]:

b—a .-

Ec— 5 hf" (22.2)
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If it is assumed that £ is constant regardless of step size, Eq. (22.2) can be used to deter-
mine that the ratio of the two errors will be

E(hy) _ h

~

E(hy)  h

—t2

(22.3)

ot

This calculation has the important effect of removing the term f” from the computation. In
so doing, we have made it possible to utilize the information embodied by Eq. (22.2) with-
out prior knowledge of the function’s second derivative. To do this, we rearrange Eq. (22.3)
to give

/11 -
E(h)) E E(hy)| —
hy
which can be substituted into Eq. (22.1):
B \2
1) + E(hz)( ,:—') = I(hy) + E(hy)
2

which can be solved for

I(hy) — I(hy)

E(hy) =
(h2) 1 - (hl/hg)z
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Thus, we have developed an estimate of the truncation error in terms of the integral esti-
mates and their step sizes. This estimate can then be substituted into

I = I(hy) + E(hy)

to yield an improved estimate of the integral:

I = I(hy) + lll(/lz) — I(h))] (22.4)

1
(hy/ h2)? —

It can be shown (Ralston and Rabinowitz, 1978) that the error of this estimate is O(h*).
Thus, we have combined two trapezoidal rule estimates of o) to yield a new estimate
of O(h*). For the special case where the interval is halved (hy = h;/2), this equation
becomes

|
I = I(hy) + ﬁ[l(hg) — I(hy)]
or, collecting terms,

4 1
1= 51(/12) = il(hl) (22.5)

http://www.pedram-payvandy.com 19

Error Corrections of the Trapezoidal Rule

Problem Statement. In the previous chapter (Example 21.1 and Table 21.1), we used a
variety of numerical integration methods to evaluate the integral of f(x) = 0.2 4+ 25x —
200x? 4+ 675x% — 900x* + 400x> froma = 0 to b = 0.8. For example, single and multiple
applications of the trapezoidal rule yielded the following results:

Segments h Integral e %o
1 0.8 0.1728 89.5
2 04 1.0688 349
4 0.2 1.4848 Q5

Use this information along with Eq. (22.5) to compute improved estimates of the integral.

Solution.  The estimates for one and two segments can be combined to yield

7=

1
(1.0688) — ;(0.1728) = 1.367467

S

The error of the improved integral is £, = 1.640533 — 1.367467 = 0.273067 (¢, = 16.6%),
which is superior to the estimates upon which it was based.
In the same manner, the estimates for two and four segments can be combined to give

7=

4 1 ,
5(1.4848) - ;(l.()688) = 1.623467

which represents an error of E, = 1.640533 — 1.623467 = 0.017067 (¢, = 1.0%). 20

http://numericalmethods.eng.usf.edu 10



Higher-Order Error Correction of Integral Estimates

where ;) x—) and /;;_| = the more and less accurate integrals, respectively, and I; ; =
the improved integral. The index & signifies the level of the integration, where k = 1 corre-
sponds to the original trapezoidal rule estimates, k = 2 corresponds to O(h*), k=3 to
O(h), and so forth. The index J is used to distinguish between the more (j + 1) and the less
(j) accurate estimates. For example, for k = 2 and j = 1, Eq. (22.8) becomes

Iy = 45, — 1) ol = N — -t 100%
: 3 11k
O(h?) O(h%) O(h?) O(h?)
la} 0.172800—2>1.367467
1.068800 ——
b) 0.172800 lA307467?1A640533
1.068800;’ 1.623467
1.484800
lc) 0.172800 1.367467 1.640533 ?1.640533
1.068800 1.623467 7] 640533
1.484800 — > 1.639467
1.600800 ——
FUNCTION Romberg (a, b, maxit, es)
LOCAL I(10, 10)
n=1
I, = Trapkq(n, a, b)
iter = 0
Do
iter = iter + 1
n= Zf!er
Liter+1.1 = TrapEq(n, a, b)
DOFOR k = 2, iter + 1
J=2+ iter — k
Iig= (41 * Iy — Ljen) / (41— 1)
FIGURE 22.4 ERR.%
Pseudocode for Romberg ea = ABS((Iy iterss — Iziter) [ 11 ster+1) * 100
integration that uses the IF (iter = maxit OR ea = es) EXIT
equalsize-segment version of END DO
the trapezoidal rule from Romberg = Iy, jter+1
Fig:i22.] END Romberg
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ADAPTIVE QUADRATURE

The theoretical basis of the approach can be illustrated for an interval x = a to x = b with
awidth of hj = b — a. A first estimate of the integral can be estimated with Simpson’s 1/3 rule,

/
£ = %(f(a) +4£(c) + f(b)) (22.10)

wherec = (a + b)/2.
As in Richardson extrapolation, a more refined estimate can be obtained by halving the
step size. That is, by applying the multiple-application Simpson’s 1/3 rule with n = 4,

/
I(hy) = %(f(a) FAf(d) +2£() +4f (@) + f(b)) @2.11)

where d = (a +¢)/2,e = (c + b)/2, and hy = h)/ 2.

Because both (/) and I(h;) are estimates of the same integral, their difference pro-
vides a measure of the error. That is,

EZ=1(hy)—1(h) (22.12)

In addition, the estimate and error associated with either application can be represented
generally as

I =1I(h)+ Eh) (22.13)

where I = the exact value of the integral, /(h) = the approximation from an n-segment
application of the Simpson’s 1/3 rule with step size h = (b — a)/n, and E(h) = the corre-
sponding truncation error.

the error of the more refined estimate, /(4;), as a function of the difference between the two
integral estimates,

1
E(hy) = ]—ﬁll(hz) — I(hy)] (22.14)
The error can then be added to I(h,) to generate an even better estimate

1
I=1(h)+ E[I(hg) — 1(h))] (22.15)
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FUNCTION quadapt(a, b) (main calling function)
tol = 0.000001

c=(a+ b2 (initialization)
fa = f(a)

fc = f(c)

fb = f(b)

quadapt = gstep(a, b, tol, fa, fc, fb)
END quadapt

FUNCTION qstep(a, b, tol, fa, fc, fb) (recursive function)

hl=b—-a
h2 = h1/2
c= (a+ b)2

fd = f((a + c)/2)
fe = f((c + b)/2)
I1 = hi/6 * (fa + 4 * fc + fb) (Simpson’s 1/3 rule)
I2=h2/6 * (fa+4*fd+2*fc+ 4*fe+ fb)
IF |12 — II| = tol THEN (terminate after Boole's rule)
I=12+ (12— 11)/15
ELSE (recursive calls if needed)
Ia = gstep(a, c, tol, fa, fd, fc)
Ib = gstep(c, b, tol, fc, fe, fb)
I=1a+ Ib
END IF
gstep = I 25
END gstep

GAUSS QUADRATURE

fl@) + fb)
LA T

I Sy
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To illustrate the approach, Eq. (22.16) is expressed as
= co fla) + ¢ f(b) (22.17)

where the ¢’s = constants. Now realize that the trapezoidal rule should yield exact results
when the function being integrated is a constant or a straight line. Two simple equations
that represent these cases are y = 1 and y = x. Both are illustrated in Fig. 22.7. Thus, the
following equalities should hold:

(b—a)/2
co+c = f 1dx
—(b—a)/2

and

+ ¢ = X dx

b—a b—a f"""’/z
-
2 2 —(b—a)/2

or, evaluating the integrals,

co+cr=b—a

and
b—a 4. b—a 0
————+c1——=
g T g
These are two equations with two unknowns that can be solved for
b—a
co =¢€1= B http://www.pedram-payvandy.com 27

22.4.2 Derivation of the Two-Point Gauss-Legendre Formula

Just as was the case for the above derivation of the trapezoidal rule, the object of Gauss
quadrature is to determine the coefficients of an equation of the form

I = ¢ f(xg) + 1 f(x1) (22.18)

where the ¢’s = the unknown coefficients. However, in contrast to the trapezoidal rule
that used fixed end points @ and b, the function arguments x( and x| are not fixed at the end
points, but are unknowns (Fig. 22.8). Thus, we now have a total of four unknowns that
must be evaluated, and consequently, we require four conditions to determine them
exactly.

28

http://numericalmethods.eng.usf.edu 14



11/29/2013

Just as for the trapezoidal rule, we can obtain two of these conditions by assuming that
Eq. (22.18) fits the integral of a constant and a linear function exactly. Then, to arrive at the
other two conditions, we merely extend this reasoning by assuming that it also fits the in-
tegral of a parabolic (y = x%) and a cubic (y= x°) function. By doing this, we determine all
four unknowns and in the bargain derive a linear two-point integration formula that is exact
for cubics. The four equations to be solved are

|
co flxo) + c1 flxy) = / ldx =2 (22.19)
-1
1
cof(xo) + ¢1 f(x)) = / xdx =0 (22.20)
-1
) 3 2
cof(xp) + c1 flx)) = / x~dx= 3 (22.21)
-1
1
cof(xo) + ¢ flx)) = / Xdx=0 (22.22)
-1

Equations (22.19) through (22.22) can be solved simultaneously for

oy =reii=l

1
xp = ——==—0.5773503...

("8}

x = = 0.5773503...

1
V3

which can be substituted into Eq. (22.18) to yield the two-point Gauss-Legendre formula
= f(_l’) + f( - ) (22.23)

Thus, we arrive at the interesting result that the simple addition of the function values at
x = 1/4/3 and —1/+/3 yields an integral estimate that is third-order accurate.

Notice that the integration limits in Egs. (22.19) through (22.22) are from —1 to 1. This
was done to simplify the mathematics and to make the formulation as general as possible.
A simple change of variable can be used to translate other limits of integration into this
form. This is accomplished by assuming that a new variable x, is related to the original
variable x in a linear fashion, as in

X =ap+ ayxy (22.24)
If the lower limit, x = a, corresponds to x; = — 1, these values can be substituted into
Eq. (22.24) to yield

a=ap+a(—1) (22.25)

Similarly, the upper limit, x = b, corresponds to x; = 1, to give

b =ap+a(l) (22.26)

http://www.pedram-payvandy.com 30
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Equations (22.25) and (22.26) can be solved simultaneously for

[}
ap = i i (22.27)
and
b—a 2229)
a) = 23
1=y
which can be substituted into Eq. (22.24) to yield
b b — a)x
PO i e (22.29)
2
This equation can be differentiated to give
dx = ~—Zdx, (22.30)

2

Equations (22.29) and (22.30) can be substituted for x and dx, respectively, in the equation
to be integrated. These substitutions effectively transform the integration interval without
changing the value of the integral. The following example illustrates how this is done in
practice.

http://www.pedram-payvandy.com 31

Two-Point Gauss-Legendre Formula
Problem Statement. Use Eq. (22.23) to evaluate the integral of
f(x) = 0.2 + 25x — 200x? + 675x> — 900x* + 400x>

between the limits x = 0 to 0.8. Recall that this was the same problem that we solved in
Chap. 21 using a variety of Newton-Cotes formulations. The exact value of the integral is
1.640533.

Solution.  Before integrating the function, we must perform a change of variable so that
the limits are from —1 to +1. To do this, we substitute @ = 0 and b = 0.8 into Eq. (22.29)
to yield

x =04+ 0.4x,
The derivative of this relationship is [Eq. (22.30)]
dx = 04 dx,

Both of these can be substituted into the original equation to yield

0.8
/ (0.2 + 25x — 200x> + 675x> — 900x* + 400x°) dx
0

1

= / [0.2 4 25(0.4 + 0.4x4) — 200(0.4 + 0.4x,)* + 675(0.4 + 0.4x,)’
-1

—900(0.4 + 0.4x,)* + 400(0.4 + 0.4x,)°]0.4 dx,
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Therefore, the right-hand side is in the form that is suitable for evaluation using Gauss
quadrature. The transformed function can be evaluated at — l/~/§ to be equal to

0.516741 and at 1/+/3 to be equal to 1.305837. Therefore, the integral according to
Eq. (22.23) is

I =0.516741 + 1.305837 = 1.822578

which represents a percent relative error of —11.1 percent. This result is comparable in
magnitude to a four-segment application of the trapezoidal rule (Table 21.1) or a single ap-
plication of Simpson’s 1/3 and 3/8 rules (Examples 21.4 and 21.6). This latter result is to
be expected because Simpson’s rules are also third-order accurate. However, because of

the clever choice of base points, Gauss quadrature attains this accuracy on the basis of only
two function evaluations.
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