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d*x dx
dv 7L m—+c—+kx =0
— =g —-—10 dr? dt

Higher-order equations can be reduced to a system of first-order equations. For
Eq. (PT7.2), this is done by defining a new variable y, where

_dx (PT7.3)
Y= T 2
which itself can be differentiated to yield
dy d*x (PT7.4)
dr — dr? '
Equations (PT7.3) and (PT7.4) can then be substituted into Eq. (PT7.2) to give
dy
m &y +cy+kx=0 (PT7.5)
dt
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TABLE PT7.1 Examples of fundamental laws that are written in terms of the rate of
change of variables (t = time and x = position).

Law Mathematical Expression Variables and Parameters
Newton'’s second law i’ . iF Velocity (), force (F], and
of motion dt m mass {m)
o . dT g i1
Fourier's heat law g=—-K— Heat flux (g), thermal conductivity (k')
dx
and temperature (T)
Fick's law of diffusion = fD% Mass flux [J), diffusion coefficient (D),
X and concentration (c)
Faraday's law AV = L%ﬁ Voltage drop [A V), inductance (1),
[voltage drop across J and current (i)
an inductor)
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FIGURE PT7.2
The sequence of events in the application of ODEs for engineering problem solving. The exam-
ple shown is the velocity of a falling parachutist.
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y=—05x* +4x> — 10x> +85x + 1 (PT7.12)

which is a fourth-order polynomial (Fig. PT7.3a). Now, if we differentiate Eq. (PT7.12),
we obtain an ODE:
dy 5 . FIGURE PT7.3 )
e —2x" 4+ 12x° — 20x + 8.5 Plots of (a] y versus x and (b} dy/dx versus x for the function
y=—0.5x4 + 4x3 — 10x2 + 8.5x+ 1.
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y= f(-Zx-‘ + 12x% — 20x +8.5) dx

Applying the integration rule (recall Table PT6.2)

Wt
" - -—
fu du_"+l+C n#-—1

to each term of the equation gives the solution
y=—05x*+4x> - 10x2 +8.5x + C
FIGURE PT7.4

Six possible solutions for the integral of —2x* 4 12x2 — 20x + 8.5. Each conforms to a
different value of the constant of integration C.

http://www.pedram-payvandy.com 7

CHAPTER

Runge-Kutta Methods

This chapter is devoted to solving ordinary differential equations of the form
% = fix,y)
In Chap. 1, we used a numerical method to solve such an equation for the velocity of the
falling parachutist. Recall that the method was of the general form
New value = old value + slope x step size
or, in mathematical terms,
Yitl =Yi+ ¢h (25.1)

According to this equation, the slope estimate of ¢ is used to extrapolate from an old value
¥ito a new value y;; over a distance & (Fig. 25.1). This formula can be applied step by step
to compute out into the future and, hence, trace out the trajectory of the solution.
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FIGURE 25.1
Graphical depiction of a one-
step method.

;, FIGURE 25.2 )
Euler's method.
EULER’S METHOD
The first derivative provides a direct estimate of the slope at x; (Fig. 25.2):
¢ = flxi. yi)

where f(x;, y;) is the differential equation evaluated at x; and y;. This estimate can be sub-
stituted into Eq. (25.1):

This formula is referred to as Euler’s (or the Euler-Cauchy or the point-slope) method.
A new value of y is predicted using the slope (equal to the first derivative at the original
value of x) to extrapolate linearly over the step size i (Fig. 25.2).

from x = 0 to x = 4 with a step size of 0.5. The initial condition at x = 0 is y = 1. Recall
that the exact solution is given by Eq. (PT7.16):

= —0.5x* + 4x3 — 10x? + 8.5x + 1
Solution.  Equation (25.2) can be used to implement Euler’s method:
¥(0.5) = y(0) + f(0, 0.5
where y(0) = 1 and the slope estimate at x = 0 is
£0, 1) = =2(0)* + 12(0)*> — 20(0) 4 8.5 = 8.5
Therefore,
¥(0.5) = 1.0+ 8.5(0.5) = 5.25
http://www.pedram-payvandy.com 10
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TABLE 25.1 Comparison of true and approximate values of the integral of
y'=-2x% 4+ 12x2 - 20x + 8.5, with the initial condifion that y = 1 at x= 0.
The approximate values were computed using Euler’s method with a step size
of 0.5. The local error refers to the error incurred over a single step. It is
calculated with a Taylor series expansion as in Example 25.2. The global
error is the total discrepancy due to past as well as present steps.

Percent Relative Error

x Yirve Yeuler Global Local
0.0 1.00000 1.00000

0.5 3.21875 5.25000 -63.1

1.0 3.00000 5.87500 -95.8

1.5 2.21875 5.12500 131.0

20 2.00000 4.50000 -125.0

2:5 2.71875 4.75000 -747

30 4.00000 5.87500 46.9

3.5 4.71875 7.12500 -51.0

40 3.00000 7.00000 -133.3

://www.pedram-payv

25.2.1 Heun’s Method

One method to improve the estimate of the slope involves the determination of two deriv-
atives for the interval—one at the initial point and another at the end point. The two
derivatives are then averaged to obtain an improved estimate of the slope for the entire in-
terval. This approach, called Heun's method, is depicted graphically in Fig. 25.9.

Recall that in Euler’s method, the slope at the beginning of an interval

¥ = f(xi, ¥ (25.12)
is used to extrapolate linearly to y;,:
Y1 = ¥i + fxi, yh ©5.13)

For the standard Euler method we would stop at this point. However, in Heun's method the
y?+ | calculated in Eq. (25.13) is not the final answer, but an intermediate prediction. This
is why we have distinguished it with a ipt 0. Equation (25.13) is called a predictor

P
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equation. It provides an estimate of y; that allows the calculation of an estimated slope at
the end of the interval:

Vet = Fxier, y0) (@5.14)

Thus, the two slopes [Eqgs. (25.12) and (25.14)] can be combined to obtain an average slope
for the interval:

5= Y+ yia S ) + f(xie, yo0)

2 2

This average slope is then used to extrapolate linearly from y; to y;.; using Euler’s method:

i yi) + F(xip y%)
2

which is called a corrector equation.

The Heun method is a predictor-corrector approach. All the multistep methods to be
discussed subsequently in Chap. 26 are of this type. The Heun method is the only one-step
predictor-corrector method described in this book. As derived above, it can be expressed
concisely as

h

Yisl = Vi

(25.15)

(25.16)
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Heun’s Method

Problem Statement. Use Heun’s method to integrate y' = 4¢”%* — 0.5y from x = O to
x = 4 with a step size of 1. The initial condition at x = 0 is y = 2.

Solution. Before solving the problem numerically, we can use calculus to determine the
following analytical solution:
4
y = ﬁ(e‘“‘* S oy B0 B ) (E25.5.1)

This formula can be used to generate the true solution values in Table 25.2.
First, the slope at (xp. yp) is calculated as

vy =4 —0.5(2) =3
This result is quite different from the actual average slope for the interval from O to 1.0,
which is equal to 4.1946, as calculated from the differential equation using Eq. (PT6.4).

The numerical solution is obtained by using the predictor [Eq. (25.15)] to obtain an es-
timate of y at 1.0:

YW =2431)=5

Note that this is the result that would be obtained by the standard Euler method. The true
value in Table 25.2 shows that it corresponds to a percent relative error of 19.3 percent.

Now, to improve the estimate for y;. ;. we use the value y? to predict the slope at the
end of the interval

¥ = f(x1, »)) = 428D — 0.5(5) = 6.402164

which can be combined with the initial slope to yield an average slope over the interval
fromx=0to 1
s 3+ 6.402164

= = 4.701082
; 2
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which is closer to the true average slope of 4.1946. This result can then be substituted into
the corrector [Eq. (25.16)] to give the prediction at x = 1

y1 = 24 4.701082(1) = 6.701082

which represents a percent relative error of —8.18 percent. Thus, the Heun method without
iteration of the corrector reduces the absolute value of the error by a factor of 2.4 as com-
pared with Euler’s method.

Now this estimate can be used to refine or correct the prediction of y; by substituting
the new result back into the right-hand side of Eq. (25.16):

[3 446" — 0.5(6.701082)

=62
5 1 =6.275811

n=2+

which represents an absolute percent relative error of 1.31 percent. This result, in turn, can
be substituted back into Eq. (25.16) to further correct:

[3+4"% —056.275811)]

3 = 6.382129

=2+
which represents an |¢,| of 3.03%. Notice how the errors sometimes grow as the iterations
proceed. Such increases can occur, especially for large step sizes, and they prevent us from
drawing the general conclusion that an additional iteration will always improve the result.
However, for a sufficiently small step size, the iterations should eventually converge on a
single value. For our case, 6.360865, which represents a relative error of 2.68 percent, is
attained after 15 iterations. Table 25.2 shows results for the remainder of the computation
using the method with 1 and 15 iterations per step.
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25.2.2 The Midpoint (or Improved Polygon) Method

Figure 25.12 illustrates another simple modification of Euler’s method. Called the mid-
point method (or the improved polygon or the modified Euler), this technique uses Euler’s
method to predict a value of y at the midpoint of the interval (Fig. 25.12a):

h
Yirr2 = ¥i + fxi, )’i)i

(b) Midpoint Method

SUB Midpoint (x, y, h, ynew)
CALL Derivs(x, y, dydx)
ym =y + dydx « h/2
CALL Derivs (x + h/2, ym, dymdx)
ynew = y + dymdx + h
X=Xx+h
END SUB

Then, this predicted value is used to calculate a slope at the midpoint:

Viei = fQis12, Yig12)

which is assumed to represent a valid approximation of the average slope for the entire in-
terval. This slope is then used to extrapolate linearly from x; to x4 (Fig. 25.12b):

(25.27)
st =i s 7

25.3 RUNGE-KUTTA METHODS

Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without re-
quiring the calculation of higher derivatives. Many variations exist but all can be cast in the
generalized form of Eq. (25.1):

Yir1 = Vi + o (xi, yi, h (25.28)

where ¢(x;, y;, h) is called an increment function, which can be interpreted as a representa-
tive slope over the interval. The increment function can be written in general form as

¢ =ark) +arky + - - + ank, (25.29)

where the «’s are constants and the k’s are

ky = f(xi, yi) (25.29a)
ka = f(xi + pih, yi + quikih) (25.29b)
ks = f(x; + pa2h. yi + gukih + gakah) (25.29¢)
kn = fxi + pa_th, yi + gu_1.1k1h + gn_12kah + - - - + gu_1,n—1kn—1h) (25.29d)

where the p’s and ¢’s are constants. Notice that the k’s are recurrence relationships. That is,
ky appears in the equation for k>, which appears in the equation for k3, and so forth. Because
each k is a functional evaluation, this recurrence makes RK methods efficient for computer
calculations.
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Various types of Runge-Kutta methods can be devised by employing different num-
bers of terms in the increment function as specified by n. Note that the first-order RK
method with n =1 is, in fact, Euler’s method. Once n is chosen, values for the a’s, p’s,
and ¢'s are evaluated by setting Eq. (25.28) equal to terms in a Taylor series expansion
(Box 25.1). Thus, at least for the lower-order versions, the number of terms, n, usually rep-
resents the order of the approach. For example, in the next section, second-order RK meth-
ods use an increment function with two terms (n = 2). These second-order methods will be
exact if the solution to the differential equation is quadratic. In addition, because terms with
13 and higher are dropped during the derivation, the local truncation error is O(h’) and
the global error is O(h%). In subsequent sections, the third- and fourth-order RK methods
(n = 3 and 4, respectively) are developed. For these cases, the global truncation errors are
O(h*) and O(h"), respectively.

25.3.1 Second-Order Runge-Kutta Methods
The second-order version of Eq. (25.28) is

Yit+1 = ¥i + (ar1ky + axk2)h (25.30)
where

ki = f(xi, ¥i) (25.30a)

k> = f(xi + prh. yi +qukih) (25.30b)

As described in Box 25.1, values for a;. a>. p. and g, are evaluated by setting Eq. (25.30)
equal to a Taylor series expansion to the second-order term. By doing this, we derive three
equations to evaluate the four unknown constants. The three equations are

a) +a =1 (25.31)
1

o ——.) 25.32

azpy > ( )
1

— 25.33

aqun =3 C )

Because we have three equations with four unknowns, we must assume a value of one
of the unknowns to determine the other three. Suppose that we specify a value for a,. Then
Eqgs. (25.31) through (25.33) can be solved simultaneously for

a=1—-a (25.34)

1

=g =— 25.35
P1L=4n T ( )

Heun Method with a Single Corrector (a2 = 1/2). If ay is assumed to be 1/2,
Egs. (25.34) and (25.35) can be solved for a; = 1/2 and p; = ¢ = 1. These parameters,
when substituted into Eq. (25.30), yield

(25.36)

where
ky = flxi, yi) (25.36a)
ky = f(xi + h, yi +kih) (25.36b)

Note that k) is the slope at the beginning of the interval and k; is the slope at the end of the
interval. Consequently, this second-order Runge-Kutta method is actually Heun's tech-
nique without iteration.
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The Midpoint Method (az = 1). If @ is assumed to be 1, then a; = 0, p; = g1 = 1/2,
and Eq. (25.30) becomes

where
ky = flxi. yi) (25.37a)
1 ;
ky= fxi + Eh. yi + Eklh) (25.37h)

This is the midpoint method.

Ralston’s Method (a2 = 2/3). Ralston (1962) and Ralston and Rabinowitz (1978)
determined that choosing a> = 2/3 provides a minimum bound on the truncation error for
the second-order RK algorithms. For this version, a¢; = 1/3 and p; = ¢g;; = 3/4 and yields

_ o

where
ki = flxi, ¥i) (25.38a)
k= f(xi + ‘3—‘h‘ yi + %klh) (25.38b)
FIGURE 25.14

Comparison of the frue solution with numerical solutions using three second-order RK methods
and Euler's method.

http://www.pedram-payvandy.com 22

http://numericalmethods.eng.usf.edu 11



25.3.2 Third-Order Runge-Kutta Methods

For n = 3, a derivation similar to the one for the second-order method can be performed.
The result of this derivation is six equations with eight unknowns. Therefore, values for
two of the unknowns must be specified a priori in order to determine the remaining parame-
ters. One common version that results is

(25.39)
where
ky = f(xi, yi) (25.39a)
1 1
ky = f(xi + zh.yi + —klh) (25.39b)
2 2
k3 = f(xi + h.yi — kih + 2kah) (25.39¢)

Note that if the derivative is a function of x only, this third-order method reduces to
Simpson’s 1/3 rule. Ralston (1962) and Ralston and Rabinowitz (1978) have developed an
alternative version that provides a minimum bound on the truncation error. In any case, the
third-order RK methods have local and global errors of Oy and O(B%), respectively, and
yield exact results when the solution is a cubic. When dealing with polynomials, Eq. (25.39)
will also be exact when the differential equation is cubic and the solution is quartic. This is
because Simpson’s 1/3 rule provides exact integral estimates for cubics (recall Box 21.3).

25.3.3 Fourth-Order Runge-Kutta Methods

The most popular RK methods are fourth order. As with the second-order approaches, there
are an infinite number of versions. The following is the most commonly used form, and we
therefore call it the classical fourth-order RK method:

(25.40)
where
ky = flxi, i) (25.40a)
ky = f(x + %h. yi+ %hh) (25.408)
| |
ky= flx; + Eh. yi + ikgh (25.40¢)
ky = f(x; + h.y; + kzh) (25.40d)

Notice that for ODEs that are a function of x alone, the classical fourth-order RK
method is similar to Simpson’s 1/3 rule. In addition, the fourth-order RK method is simi-
lar to the Heun approach in that multiple estimates of the slope are developed in order to
come up with an improved average slope for the interval. As depicted in Fig. 25.15, each
of the ks represents a slope. Equation (25.40) then represents a weighted average of these
to arrive at the improved slope.
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Classical Fourth-Order RK Method

Problem Statement.

(a) Use the classical fourth-order RK method [Eq. (25.40)] to integrate
flx,y) = =2x3 + 1202 = 20x + 8.5

using a step size of h = (.5 and an initial condition of y = 1 at x = 0.
(b) Similarly, integrate

flx, y) = 4e"8 — 0.5y
using & = 0.5 with y(0) =2 from x = 0 to 0.5.
Solution.

(a) Equations (25.40a) through (25.40d) are used to compute k| = 8.5,k = 4.21875, k3 =
4.21875 and ky = 1.25, which are substituted into Eq. (25.40) to yield

|
y(05) =1+ 618'5 +2(4.21875) + 2(4.21875) + 1.25]} 0.5

= 3.21875

which is exact. Thus, because the true solution is a quartic [Eq. (PT7.16)], the fourth-
order method gives an exact result.

(b) For this case, the slope at the beginning of the interval is computed as
ki = £(0,2) = 4™ ~0502) =3
This value is used to compute a value of y and a slope at the midpoint,
¥(0.25) =2+ 3(0.25) =2.75
k= £(0.25,2.75) = 40P —0.5(2.75) = 3.510611

This slope in turn is used to compute another value of y and another slope at the
midpoint,

¥(0.25) =2 +3.510611(0.25) = 2.877653
ks = £(0.25,2.877653) = 4¢"805) _ 0 5(2.877653) = 3.446785
Next, this slope is used to compute a value of y and a slope at the end of the interval,

¥(0.5) = 2+ 3.071785(0.5) = 3.723392
ky = £(0.5,3.723392) = 4¢"309 — 0.5(3.723392) = 4.105603

http://www.pedram-payvandy.com 26

http://numericalmethods.eng.usf.edu 13



