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fr(x) = by + bi(x — xp) + ba(x — xp)(x — x1)
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nx)=bo+bi(x —x0) + -+ by(x — x0)(x —x1) -+ - (X — X5—1)

by = f(xo)
by = flx1, x0]
by = flxa2. x1, x0]
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Fxy) 4 Flxz, %] 4 Flxg %3 1) /

SUBROUTINE NewtInt (x, y, n, xi, yint, ea)
LOCAL fdd,,,
DOFOR i = 0, n
fddy o = y;
END DO
DOFOR j = 1, n
DOFOR i = 0, n —J
fdd/_j = (fdd“.;'j_l <= fddi._;.})/(X;..,j = X3)
END DO
END DO
xterm = 1
yintg = fddo'g
DOFOR order = 1, n
xterm = xterm x (X7 — Xprder—1)
Yint2 = yintyer—1 + fddp prger * Xterm
€dyrger—1 = YINt2 — yintarer—1
Yintoge, = yint2
END order
END NewtInt
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LAGRANGE INTERPOLATING POLYNOMIALS

X—Xx X — X
filx) = = f(xo) + —— f(x1)
X0 — X1 X1 — Xp
_ r=x)x-x) (¥ = x0)(x = x) x-x)-x)
hlx) = (X0 = x1)(xp = x2) flxa) + (x) = x0) (x| = x2) l (x3 = xg)(x2 = xl)f(m
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xp=1 flxg) =0
x1=4 flx)) = 1.386294
X=06 flx2) = 1.791760

Solution.  The first-order polynomial [Eq. (18.22)] can be used to obtain the estimate at
=12
2-4 2-1

2) = —0+ ——1.386294 = 0.4620981
fi@)= 720+ 77—

In a similar fashion, the second-order polynomial is developed as [Eq. (18.23)]

_2-4H2-6) 2-1)R2-6)
@2 = TR _6)0+ @ 1)(4_6)1.386294
2-1D2-49)

(6—1)(6—4)

1.791760 = 0.5658444
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SPLINE INTERPOLATION

Linear Splines

f(x) = f(xo) + mo(x — xp)
f(x) = flx)) +mi(x — x1)

f(x) = f(xn—l) +m,_ 1 (x — x,-1)
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FUNCTION Lagrng(x, y, n, Xx)

sum = 0
DOFOR 7= 0, n
product = y;
D0FOR j = 0, n
IFi# jTHN
product = product(xx = x;)/(x; = x;)
ENDIF
END 00
sum = sum + product
END 00
Lagrng = sum
END Lagrng
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Quadratic Splines

The objective in quadratic splines is to derive a second-order polynomial for each in-
terval between data points. The polynomial for each interval can be represented generally as

fi(x) = aix® + bix +¢; (18.28)

Figure 18.17 has been included to help clarify the notation. For n + 1 data points (i = 0, 1,
2,...,n), there are n intervals and, consequently, 3n unknown constants (the a’s, b’s, and
c’s) to evaluate. Therefore, 3n equations or conditions are required to evaluate the un-
knowns. These are:

1. The function values of adjacent polynomials must be equal at the interior knots. This
condition can be represented as

a,~_1xi2_l + b1 Xy + G = fixi-1) (18.29)
llix,-z_l +bixi1+ci = flxioy) (18.30)

for i =2 to n. Because only interior knots are used, Eqs. (18.29) and (18.30) each
provide n — 1 conditions for a total of 2n — 2 conditions.
2. The first and last functions must pass through the end points. This adds two additional

equations:
aixg + bixo + c1 = f(xo) (18.31)
anx? + buxy + cu = f(xn) (18.32)

for a total of 2n — 2 + 2 = 2n conditions.
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3. The first derivatives at the interior knots must be equal. The first derivative of Eq.
(18.28) is

fx)=2ax+b
Therefore, the condition can be represented generally as
20; 1%+ bioy =281+ b; (18.33)

for i =2 to n. This provides another n — 1 conditions for a total of 2n +n - | =
3n — 1. Because we have 3n unknowns, we are one condition short. Unless we have
some additional information regarding the functions or their derivatives, we must make
an arbitrary choice to successfully compute the constants. Although there are a number
of different choices that can be made, we select the following:

4. Assume that the second derivative is zero at the first point. Because the second deriva-
tive of Eq. (18.28) is 2a;, this condition can be expressed mathematically as

ay=0 (18.34)
The visual interpretation of this condition is that the first two points will be connected
by a straight line.
17
Cubic Splines filx) = a‘;xi 4 b‘-,\'z +cix + d;
Thus, for n + 1 data points (i =0, 1,2, ..., n), there are n intervals and, consequently, 4n
unknown constants to evaluate. Just as for quadratic splines, 4n conditions are required to
evaluate the unknowns. These are:
1. The function values must be equal at the interior knots (2n — 2 conditions).
2. The first and last functions must pass through the end points (2 conditions).
3. The first derivatives at the interior knots must be equal (n — | conditions).
4. The second derivatives at the interior knots must be equal (n — 1 conditions).
5. The second derivatives at the end knots are zero (2 conditions).
The visual interpretation of condition 5 is that the function becomes a straight line at the end
knots. Specification of such an end condition leads to what is termed a “natural” spline. It is
given this name because the drafting spline naturally behaves in this fashion (Fig. 18.15). If
the value of the second derivative at the end knots is nonzero (that is, there is some curva-
ture), this information can be used alternatively to supply the two final conditions.

The above five types of conditions provide the total of 4n equations required to solve
for the 4n coefficients. Whereas it is certainly possible to develop cubic splines in this fash-
ion, we will present an alternative technique that requires the solution of only n — 1 equa-
tions. Although the derivation of this method (Box 18.3) is somewhat less straightforward
than that for quadratic splines, the gain in efficiency is well worth the effort.

18
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MULTIDIMENSIONAL INTERPOLATION
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FIGURE 18.19
Graphical depiction of two-dimensional bilinear interpolation where an intermediate value (filled
circle] is estimated based on four given values (open circles).
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Bilinear Interpolation

Two-dimensional interpolation deals with determining intermediate values for functions of
two variables, z = f(x;, y;). As depicted in Fig. 18.19, we have values at four points: fix|, y)),
fx2, y1), fixy, y2), and flxa, y2). We want to interpolate between these points to estimate the
value at an intermediate point flx;, y;). If we use a linear function, the result is a plane con-
necting the points as in Fig. 18.19. Such functions are called bilinear.

A simple approach for developing the bilinear function is depicted in Fig. 18.20. First,
we can hold the y value fixed and apply one-dimensional linear interpolation in the x
direction. Using the Lagrange form, the result at (x;, y;) is

‘\' fxa 1) (18.38)
- X

X

5 Xi —X2 i
SOy y) = ——fx1, y) +
x| — X2 X2

and at (x;, y7) is

X] .
= S(x2, y2) (18.39)
]

N Xi—X2 i
S, ) =——f(x1, ) +
X1 — X3 X2

These points can then be used to linearly interpolate along the y dimension to yield the final
result,

g Yo—32 4
Sy yi) = —— fxi, y) + fxi ) (18.40)
Y= yi

.\‘l .
e
Assingle equation can be developed by substituting Egs. (18.38) and (18.39) into Eq. (18.40)

. 20
to give
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FIGURE 18.20

Twodimensional bilinear interpolation can be implemented by first appying one-dimensioncl
linear interpolation along the x dimension tc defermine values at x. These values can then bz
used to linearly interpolate aleng the y dimension 1o yield the final result at x, y;.

P —X] Y=

J(xi; yi )— - "f(n \|)+ '“/(rv yi)
X] —X2 ¥ — )2 X3 — X1 Y1 —)2
Xi—X32 yi — Y X=Xy ME—W]
+ 22 Ay )+ —— 22— {2, )
X1 —:Xz Y2 — ¥ X2 =X Y2— )1
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Bilinear Interpolation
Problem Statement.  Suppose you have measured temperatures at a number of coordi-
nates on the surface of a rectangular heated plate:

T2, =60 TO.1)=575

72,6)=55 T(9,6)="70

Use bilinear interpolation to estimate the temperature at x; — 5.25 and y; — 4.8.

Solution.  Substituting these values into Eq. (18.41) gives

55 4)_5.25—9 4.8—660 5:25 -2 4.8—6{75

R R T TR T " 9-2 1—0“'
25—-948-1 5. 2 48—
2 55+ = 70_612
2—9 =1 9—2 G-I

Note that beyond the simple bilinear interpolation described in the foregoing example,
higher-order polynomials and splines can also be used to interpolate in two dimensions.
Further. these methods can be readily extended to three dimensions. We will return to this
topic when we review software applications for interpolation at the end of Chap. 19.
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