

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$D_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{22} & a_{33} - a_{32} & a_{23} \\ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$D_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = a_{21} & a_{33} - a_{31} & a_{23} \\ D_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$D_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{21} & a_{32} - a_{31} & a_{22} \\ A_{31} & a_{32} \end{vmatrix}$$
Determinant of $A = D = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

						Z.
Back Substitution						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
En 27		x-y-	2/2+	Ex	(1	15-12)
$1x_0$	+1 <i>x</i> 1	-1 <i>x</i> ₂	+4 <i>x</i> ₃	=	8	
	- 2x ₁	-3 <i>x</i> ₂	+1 <i>x</i> ₃	=	5	
		2 <i>x</i> ₂	- 3 <i>x</i> ₃	=	0	
X 3	= 2		2 <i>x</i> ₃	=	4	
8						

						E.
		Bac	k Subs	titution		
7.450	27	N.	X-Y-2,	it the	()	15-k)
	1 <i>x</i> ₀	+1 <i>x</i> ₁	-1 <i>x</i> ₂	=	0	
		- 2x ₁	-3 <i>x</i> ₂	=	3	
	x ₂ :	= 3	2 <i>x</i> ₂	=	6	
9.						

S dame		Forward Elimination				NINS	
$\sum_{i=1}^{n} \frac{1}{i} $			(=) Z	North			$\left(\frac{1}{\sqrt{2}}\right)$
	4 <i>x</i> ₀	+6 <i>x</i> 1	+2 <i>x</i> ₂	- 2 <i>x</i> ₃	=	8	
		- 3x ₁	+4 <i>x</i> ₂	- 1 <i>x</i> ₃	=	0	
			1 <i>x</i> ₂	+1 <i>x</i> ₃	=	9	
				3 <i>x</i> ₃	=	6	
17.							

Gauss-Jordan Elimination: Example					
$\begin{bmatrix} 1 & 1 & 2 \\ -1 & -2 & 3 \\ 3 & 7 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 10 \end{bmatrix}$ Augmented Matrix: $\begin{bmatrix} 1 & 1 & 2 & & 8 \\ -1 & -2 & 3 & & 1 \\ 3 & 7 & 4 & 10 \end{bmatrix}$					
$ \begin{array}{c c} & & \\ \hline \end{array} \\ \hline \rule{0ex}{3ex}{3ex}{3ex}{3ex}{3ex}{3ex}{3ex}{3$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
R3 ← R3 - (3) R1 $\begin{bmatrix} 0 & 4 & -2 \\ -14 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 & -2 \\ -14 \end{bmatrix}$					
R1 \leftarrow R1 - (1)R2 $\begin{bmatrix} 1 & 0 & 7 & 17 \\ 0 & 1 & -5 -9 \end{bmatrix}$ Scaling R3: $\begin{bmatrix} 1 & 0 & 7 & 17 \\ 0 & 1 & -5 -9 \end{bmatrix}$					
$R3 \leftarrow R3-(4)R2 \qquad 0 0 18 \mid 22 \qquad R3 \leftarrow R3/(18) \qquad 0 0 1 \mid 11/9 \qquad 0$					
$R1 \in R1 - (7)R3$ [1 0 0] 8,444] RESULT:					
$R2 \leftarrow R2 - (-5)R3$ 0 1 0 - 2.888					
$\begin{bmatrix} 0 & 0 & 1 & 1.222 \end{bmatrix} \qquad \begin{array}{c} x_1 = 8.45, & x_2 = -2.89, \\ x_3 = 1.23 \end{array}$					
Time Complexity? $\rightarrow \rightarrow O(n^3)$					

$$\begin{bmatrix} A \\ x \end{bmatrix} = \{b\} \implies \begin{bmatrix} L \\ U \\ x \end{bmatrix} = \{b\}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ a_{21} & 1 & 0 \\ a_{21} & 1 & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ a_{21} & 1 & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{'} & a_{23}^{'} \\ 0 & 0 & a_{33}^{''} \end{bmatrix}$$
$$l_{21} = \frac{a_{21}}{a_{11}}$$
$$l_{31} = \frac{a_{31}}{a_{11}}$$
$$l_{32} = ?$$

