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Solving Systems of Equations

= A linear equation in n variables:

= For small (n < 3), linear algebra provides several tools to solve
such systems of linear equations:

. Graphical method
. Cramer’s rule
. Method of elimination

= Nowadays, easy access to computers makes the solution of
very large sets of linear algebraic equations possible

5

Determinants and Cramer’s Rule |

[A]{x} = {b} [A] : coefficient matrix

818, 8 A, 3,8, [ % | (b
*[A] = L-u ay a23—| :> 8,188y | %, |=| b,
I |_a31 as, assJ A31 83, 833 || X3 b3 i
b a;, a; a, b a, a,a,0b
b, a,, a,, a, b, a,, a,, a,, b,
- b, a3D2 ay5 e g, kl); 8,5 - ay, aD32 b,

D : Determinant of A matrix
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D=
— a,,a
[Alix}={B} o _P=i_, .
a32a33
;8,83 D _ |@2183 4 a
12 — — @21 933
[A]: Ay 8y, Ayg 83y 853
a,. a
83y 83, 33 D,=| * **|=a,a,,
a31a32
) ad,, a a,. a
Determinantof A=D=a,,| > Z|-a, - =
Ay, Agg a3, 85,
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Gauss Elimination
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Forward
Elimination

S—

Solve Ax = b a;, A, ;b
= S0IVE AX = a‘21 a22 a23 bZ
= Consists of two phases: (B Bz s | Dy
. Forward elimination U
. Back substitution a, a, a,|b]
coruard Elimina 0 @&, ay|b,
= Forward Elimination 0 0 a,|b|_|
reduces Ax = b to an upper
triangular system Tx= 5" U
" b, b, —a,.x
= Back substitution can then Xy=—2 X, =223
solve Tx=5" forx 83 82
b, —a.x,—a,,Xx
X, = 85X — 81X
ay
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Forward Elimination |

_(3/]) XI'X2+X3 =6 X; - X + X3 =6
(21 33X +4x;+2x3=9 ‘ @) 0 +7x, - x; = -9
2x; + X, + x;3 = 7 0 +3x,- x; =-5

X; - X+ X3 =6

‘ 0 7x,-x3 = -9
0 O -(4/7)x;=-(8/7)

Solve using BACK SUBSTITUTION: Xz= 2 x=-1 X; =3

Back Substitution I

1x, +1x;, -1x, +4x; = 8
-2x; 3x, +lx; = 5

2x, —3x; = 0

X3= 2 2X; = 4
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10/28/2013



Back Substitution

Back Substitution

-2X; 3%
X;=3 2X,
9
1x, +1x,

10
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Back Substitution l

Back Substitution
(* Pseudocode *)

fori <« n downtoldo

[* calculate x; */

x[i]<b[i]l/a[i,i]

[* substitute in the equations above */
for j«1toi-1 do

b[jl<b[j]l-x[i]xa[ji]
endfor
endfor

Time Complexity? > o(n?)

12
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Forward Elimination l

Column

Row

Row i
% } Step through
Raow j
> Cleare _a
Already to zero a; =a; +a; [J'J =0
cleared — ! a,
to zero Column i
13
M Forward Elimination |
L
T
I
P
L
s
-(-4/4) —4x, —3x; —-5x, +4x; = 1

14
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-(3/-3)

-(6/-3)

15

4x,

4x,

ITM=rov——-rc

16
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Forward Elimination

+6x;, +2x,

- 3/\/1 +4X2

6x, —6x,

Forward Elimination

+6x;, +2x,
- 3x; +4x,

1x,

/ 2X;

- 1)(3

+2X;

+7x;

+1x;

+5X;

24
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Forward Elimination I
4x, +6x;, +2x, —-2x; = 8
-3, +4x, -1x; = 0
3X3 = 6

17

Operatlon count m Forward

[ e | s e

TOTAL#of Operationsfor FORWARDELIM INATION :

2n?+2(n-1)% +..+2*(2* +2*(1)* =2 i’
i=1
_9 n(n+1)(2n+1)
6

18 =0(n°)
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**herePitfalls of Elimination Methods

It is possible that during both elimination and back-substitution phases a
division by zero can occur.

For example:
2X, +3X;=8 0 2 3
4x, + 66X, + 7X3=-3 A= 4 6 7
2X1+ Xyt 6X3=5 2 1 6

Solution: pivoting (to be discussed later)

19

Pitfalls (cont.)

= Because computers carry only a limited number of significant figures,
round-off errors will occur and they will propagate from one iteration to the
next.

= This problem is especially important when large numbers of equations (100
or more) are to be solved.

= Always use double-precision numbers/arithmetic. It is slow but needed for
correctness!

= Itisalsoa good idea to substitute your results back into the original

equations and check whether a substantial error has occurred.

20
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Pitfalls (cont.)

- small changes in coefficients resultin large
changes in the solution. Alternatively, a wide range of answers can
approximately satisfy the equations.

( —small changes in coefficients result in small
changes in the solution)

Problem: Since round off errors can induce small changes in the coefficients, these
changes can lead to large solution errors in ill-conditioned systems.

Example:

b, a, 10 2
_b.a,|_ 104 2 _200)-2004) _, ¢
D 12)-2(1.)) -0.2 2
b, a, 10 2
_ba,| 1104 2 _200)-2004) 1
D 1(2)-2(1.05) -0.1

Pitfalls (cont.)

ill-conditioned systems (cont.) —

= Surprisingly, substitution of the erroneous values, x;=8 and x,=1, into the original
equation will not reveal their incorrect nature clearly:

X, + 2%, =10 8+2(1)=10  (the same!)
1.1x, + 2x,=10.4 1.1(8)+2(1)=10.8 (close!)

IMPORTANT CONCLUSION:
An ill-conditioned system is one with a determinant close to zero

= If determinant D=0 then there are infinitely many solutions =» singular system

= Scaling (multiplying the coefficients with the same value) does not change the
equations but changes the value of the determinant in a significant way.

However, it does not change the ill-conditioned state of the equations!

DANGER! It may hide the fact that the system is ill-conditioned!!

22
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How can we find out whether a system is ill-conditioned or not?
Not easy! Luckily, most engineering systems yield well-conditioned results!

Is the system ill-conditioned?

= One way to find out: First scale (normalize) each row such that no coefficient is
larger than 1. Then compute the determinant and check if it is close to zero.

= Another way: change the coefficients slightly and recompute & compare

COMPUTING THE DETERMINANT:
= Given an upper triangular sys. of equations

D=t;tyts; t, t, U,
In general, D=ty ty, ... t,, D=0 t,,
0 0 t,

If pivoting is used then
D = ty;ty...t,,(-1)P where p is the number of times the rows are pivoted

23

Techniques for Improving Solutions I

If a pivot element is zero, normalization step leads to division by zero. The
same problem may arise, when the pivot element is close to zero. Problem
can be avoided:

- Partial pivoting
Switching the rows below so that the largest element is the pivot element.

. Complete pivoting
. Searching for the largest element in all rows and columns then switching.

. This is rarely used because switching columns changes the order of x’s
and adds significant complexity and overhead =» costly

- used to reduce the round-off errors and improve accuracy

http://numericalmethods.eng.usf.edu 12
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Gauss-Jordan Elimination |

25

Gauss-Jordan Elimination: Example |
1 1 2|x 8 1 1 2|8
-1 -2 3|x|=|1 Augmented Matrix:| -1 -2 3|1
Stphistoys ) e =t 8 - CAg
1 1 2|8 Scaling R2: 11 2|8
R2 ¢ R2 - (-1)R1 0 -1 5|9 R2 ¢ R2/(-1) 0 1 -5 -9
R3 € R3- (3)R1 0 4 -2|-14 0 4 -2/|-14
R1 € R1 - (1)R2 1 0 7|17 10 7|17
0 1 _5|_9 Scaling R3: 0 1 _5| -9
R3 € R3-(4)R2 0 0 18|22 R3 € R3/(18) 0 0 1|11/9
RLeRl-7R3 |1 O 0] 8.444 RESULT:
R2 € R2-(-5)R3 0 1 0]-2.888 x,=8.45, x,=-2.89,
0 0 11222 x=1.23

Time Complexity? > o(r°)
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LU Decomposition
and
Matrix Inversion

Chapter 10

.

Solve A X=Db (system of linear equations)

Decompose A=L U

L : Lower Triangular Matrix U : Upper Triangular Matrix

28
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To solve [A]{x}={b}
[LIIVI=[Al =2 [LI[UKX}={b}

Consider [U{x}={d}
[LI{d}={b}

1. Solve [L]{d}={b} using forward substitution to get {d}

2. Use back substitution to solve [UJ{x}={d} to get {x}

29

A, @, 1 0 Ofuy u, u;

= Qo By = |1, 1 0 0 u, Uy,

83 @83 g3 7= G| M= W)
[L] [U]

http://numericalmethods.eng.usf.edu
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[Al

A, 4, Q| X b1
Ay Ay Ay || X |= bz
I Ay 83, Qg3 || X3 bs

P
——
Il
O
——
| e |
—
—|
C
e
X
——
Il
O
——

b

| 1
' Gauss Elimination =|b,
> 4 .

b3

1 0 O
1 0 [U]

1 | | Coefficients used during the
elimination step

[L]-

31

a'31 a32 a33 |31 |32 1 O O a33
| a'll
[ L-U ]
|, =5
a11

32
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Example: A ~ L - U
-1 25 5 1 0 0]-1 25 5

-2 9 11 (=2 1 00 4 1
4 -22 -20 -4 -3 10 0 3

Gauss Elimination

*m—l 25 5 -1 25 5

l,=-2/1=2 =2 9 11 (=(0 4 1
4 -22 -20 0 -12 0

-1 25 5] {1 25 5

lyy = 4/-1= -4

0 4 1
0 -12 0]

Coefficients

Iy, = -12/4= -3

[L]

MATRIX INVERSE
A Al =1

Ay Q, Q| Xy X, X 1>t
Ay By Ay | Xy Xy Xy3 = 010

* a31 a32 a33 X31 X32 X33 O O 1
| Solve in.n=3 major steps
1 2 3

A, &, 3 || Xy 1 Q; Q5 aj;| Xy 0 A A, Q3| Xgg 0
Ay Ay Ay Xy [= 0 Ay Ay Ay || Xy |= 1 Ay Ay By || X3 |= 0

A3 Az Qg3 Xy 0 A3 A3 833 Xy 0 A3 Q3 853 Xy 1
Solve each one X, | |1
using A=L'U method =» e.g. _
g 9 LU x,|=|0
X3y 0
Solve Problem 10.6. Solution file is available on the 34

web.
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Special Matrices and Gauss-Seidel

Chapter 11

35

= Certain matrices have particular structures
that can be exploited to develop efficient
solution schemes (e.g. banded, symmetric)

= A banded matrix is a square matrix that has
all elements equal to zero, with the exception
of a band centered on the main diagonal.

= Standard Gauss Elimination is in

solving banded equations because
unnecessary space and time would be
expended on the storage and manipulation of
Zeros.

= There is no need to store or process the zeros O
(off of the band)

36
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Solving Tridiagonal Systems
(Thomas Algorithm)

A tridiagonal system has a bandwidth of 3

10/28/2013

f, 6 NEEC DECOMPOSITION
€, fz 9, Won— r
= DO k=2,n
& f3 U5 ([ % ry '
e, f,|x r € = &/ fis
L 4 4 (M 4 f}{ = f}{- ey
1 0 0 Gx-1
I S OANG 9, END DO
A=L*U = , : : :
e, 1 0 f, 9;| Time Complexity?
9) /K )it f, O(n)
vs. O(n3)
57
Tridiagonal Systems (cont.) |
{d}
1 0 fi oo Xy n
e, 1.0 fz‘ 9, X |
o Ut f, 0% | |n
0 0 9'4 f4 Xy r4_
R DR O NI f g, e o,
e, 1 0 0)dy| |1, f, o, X, ||,
0 e, 1 0]d, ry f, 0| % | |d,
0 0 e, 1jd,| |1, fo x| [d,
Forward Substitution Back Substitution
d1 = I"1 Xn = dfl /fll
DO «=2,n DO «=n-11 -1
d, =ry- e, d, X = (di- G - Xpr1)
END DO END DO

http://numericalmethods.eng.usf.edu
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Cholesky Decomposition
(for Matrices)

* A positive definite matrix is one for which the product
{X}T[AI{ X} is greater than zero for all nonzero vectors X

11 Ill |21 |31

I |41

[Al=[A] =L*L" = Ly 1 bz 1z Lo L™ means Transpose of
|31 |32 |33 |33 |43 L
| |

4 |4z |43 |44

i—1
a'ki _lejlkj k-1
I :I,—=1 for k=12>,n i=12> k-1 I, = [a,-> I
ii j=1

**here Jacobi lterative Method

Iterative methods provide an alternative to the elimination

methods.
all a12 a13 all O 0
Ax=b A=l|a, a, a, D=0 a, O
a31 a32 a33 O O a33

[D+(A-D)]Jx=b = Dx=b-(A-D)x = x=D>[b—(A-D)x]

X, | |1/a, O 0 b, 0 a, a,|Xx
X, |=| 0 1la,, O |*|b,|-|a,, 0 a,l|X,
X3 0 0 1/a, by | |as as, 0 | X,
Xlk — b, — ailez(il — 3-13)(571 X; — b, - 5‘-21)(1#1 — 8-23)(;.(71 Xg — b; — 3-3.1)(1“1 — 8-32)(571
a:ll a'22 a33
Choose an initial guess (i.e. all zeros) and Iterate until the equality is
satisfied.

No quarantee for converaence! Each iteration takes O(n2) time!
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Gauss-Seidel |

= The Gauss-Seidel method is a commonly used

= It is same as Jacobi technique except with one important difference:

A newly computed x value (say x,) is substituted in the subsequent
equations (equations k+1, k+2, ..., n) in the same iteration.

Example: Consider the 3x3 system below:

| | . S ,
e _ b, —a,,X5 o 1oXS C » First, choose initial guesses for the x’s.
i a,, « A simple way to obtain initial guesses is
to assume that they are all zero.
b —a Xnew_a Xold ) )
X;‘ew — 22 2171 23773 e Compute new X, using the previous
s iteration values.

new new o New X is substituted in the equations

b, —a, X" —a,,X
Xpo =233 8272 to calculate x,and x;
a .
e « The process is repeated for X5, X3, ...
{X }old <~ {X }new
41

Convergence Criterion for Gauss-Seidel Method l

= |terations are repeated until the convergence criterion is satisfied:

i =t
X =X

3

For all i, where j and j-1 are

o,
100% b &s the current and previous iterations.

Jeail =

= As any other iterative method, the Gauss-Seidel method has problems:
- It may not converge or it converges very slowly.

= I the coefficient matrix A is Diagonally Dominant Gauss-Seidel is
guaranteed to converge. For eachequationi:
n
Diagonally Dominant =
Jonaty |aii|XZ|ai,j|
j=t
J#i

= Note that this is not a necessary condition, i.e. the system may still have a
chance to converge even if A is not diagonally dominant.
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