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~ Linear Algebraic Equations ~

Gauss Elimination

Chapter 9
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Solving Systems of Equations

 A linear equation in n variables:

a1x1 + a2x2 +  … + anxn = b

 For small (n ≤ 3), linear algebra provides several tools to solve 

such systems of linear equations:

• Graphical method

• Cramer’s rule

• Method of elimination

 Nowadays, easy access to computers makes the solution of 

very large sets of linear algebraic equations possible

4

Determinants and Cramer’s Rule
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Gauss Elimination

Solve Ax = b

Consists of two phases:

• Forward elimination

• Back substitution

Forward Elimination

reduces Ax = b to an upper 
triangular system Tx = b’

Back substitution can then 
solve Tx = b’ for x
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Gaussian EliminationForward Elimination

x1 - x2 +  x3 = 6
3x1 + 4x2 + 2x3 =  9
2x1 +  x2 +  x3 =  7

x1 - x2 +  x3 = 6
0 +7x2 - x3 =  -9
0 + 3x2 - x3 = -5

x1 - x2 +  x3 =  6
0 7x2 - x3 =  -9
0      0  -(4/7)x3=-(8/7)

-(3/1)

Solve using BACK SUBSTITUTION:         x3 = 2 x2=-1       x1 =3

-(2/1) -(3/7)
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Back Substitution

1x0 +1x1 –1x2 +4x3 8=

– 2x1 –3x2 +1x3 5=

2x2 – 3x3 0=

2x3 4=x3 = 2
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1x0 +1x1 –1x2 0=

– 2x1 –3x2 3=

2x2 6=

Back Substitution

x2 = 3

10

1x0 +1x1 3=

– 2x1 12=

Back Substitution

x1 = –6
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1x0 9=

Back Substitution

x0 = 9

12

for i  n down to 1 do

/* calculate xi */

x [ i ]  b [ i ] / a [ i, i ]

/* substitute in the equations above */

for j  1 to i-1 do

b [ j ]  b [ j ]  x [ i ] × a [ j, i ]

endfor

endfor

Back Substitution
(* Pseudocode *)

Time Complexity?          O(n2)    



10/28/2013

http://numericalmethods.eng.usf.edu 7

13

Gaussian EliminationForward Elimination
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Forward Elimination

4x0 +6x1 +2x2 – 2x3 = 8

2x0 +5x2 – 2x3 = 4

–4x0 – 3x1 – 5x2 +4x3 = 1

8x0 +18x1 – 2x2 +3x3 = 40

-(2/4)
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4x0 +6x1 +2x2 – 2x3 = 8

+4x2 – 1x3 = 0

+3x1 – 3x2 +2x3 = 9

+6x1 – 6x2 +7x3 = 24

– 3x1

-(3/-3)
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Forward Elimination

-(6/-3)

16

4x0 +6x1 +2x2 – 2x3 = 8

+4x2 – 1x3 = 0

1x2 +1x3 = 9

2x2 +5x3 = 24

– 3x1

??
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Forward Elimination
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4x0 +6x1 +2x2 – 2x3 = 8

+4x2 – 1x3 = 0

1x2 +1x3 = 9

3x3 = 6

– 3x1

Forward Elimination

18

Gaussian Elimination
Operation count in Forward 
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**herePitfalls of Elimination Methods

Division by zero

It is possible that during both elimination and back-substitution phases a 

division by zero can occur.

For example:

2x2 + 3x3 = 8 0 2 3

4x1 +  6x2 + 7x3 = -3 A = 4 6 7

2x1 +    x2 + 6x3 = 5 2 1 6

Solution:  pivoting (to be discussed later)

20

Pitfalls (cont.)

Round-off errors

 Because computers carry only a limited number of significant figures, 

round-off errors will occur and they will propagate from one iteration to the 

next. 

 This problem is especially important when large numbers of equations (100 

or more) are to be solved.

 Always use double-precision numbers/arithmetic. It is slow but needed for 

correctness! 

 It is also a good idea to substitute your results back into the original 

equations and check whether a substantial error has occurred.
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ill-conditioned systems - small changes in coefficients result in large 

changes in the solution. Alternatively, a wide range of answers can 

approximately satisfy the equations. 

(Well-conditioned systems – small changes in coefficients result in small 

changes in the solution)

Problem: Since round off errors can induce small changes in the coefficients, these 

changes can lead to large solution errors in ill-conditioned systems.

Example:

x1 + 2x2 = 10

1.1x1 + 2x2 = 10.4

x1 + 2x2 = 10

1.05x1 + 2x2 = 10.4

3       4
2.0

)4.10(2)10(2

)1.1(2)2(1

2   4.10

2      10

2

222

121

1 






 x

D

ab

ab

x

1       8
1.0

)4.10(2)10(2

)05.1(2)2(1

2   4.10

2      10

2

222

121

1 






 x

D

ab

ab

x

Pitfalls (cont.)

22

ill-conditioned systems (cont.) –
 Surprisingly, substitution of the erroneous values, x1=8 and x2=1, into the original 

equation will not reveal their incorrect nature  clearly:

x1 + 2x2 = 10 8+2(1) = 10       (the same!)

1.1x1 + 2x2 = 10.4           1.1(8)+2(1)=10.8     (close!)

IMPORTANT CONCLUSION:

An ill-conditioned system is one with a determinant close to zero

 If determinant D=0 then there are infinitely many solutions  singular system

 Scaling (multiplying the coefficients with the same value) does not change the 
equations but changes the value of the determinant in a significant way. 

However, it does not change the ill-conditioned state of the equations! 

DANGER!  It may hide the fact that the system is ill-conditioned!!

Pitfalls (cont.)
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How can we find out whether a system is ill-conditioned or not?
Not easy! Luckily, most engineering systems yield well-conditioned results!

Is the system ill-conditioned?
 One way to find out: First scale (normalize) each row such that no coefficient is 

larger than 1. Then compute the determinant and check if it is close to zero.

 Another way: change the coefficients slightly and recompute & compare

COMPUTING THE DETERMINANT:

 Given an upper triangular sys. of equations 

D=t11t22t33

In general,   D=t11t22 … tnn

If pivoting is used then

D = t11t22…tnn(-1)p where p is the number of times the rows are pivoted 
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Techniques for Improving Solutions

Use of more significant figures – double precision arithmetic

Pivoting
If a pivot element is zero, normalization step leads to division by zero. The 
same problem may arise, when the pivot element is close to zero. Problem 
can be avoided:

• Partial pivoting
Switching the rows below so that the largest element is the pivot element.

Go over  the solution in:  CHAP9e-Problem-11.doc

• Complete pivoting
• Searching for the largest element in all rows and columns then switching.

• This is rarely used because switching columns changes the order of x’s
and adds significant complexity and overhead  costly 

Scaling
• used to reduce the round-off errors and improve accuracy



10/28/2013

http://numericalmethods.eng.usf.edu 13

25

Gauss-Jordan Elimination
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Gauss-Jordan Elimination: Example
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R1  R1 - (7)R3

R2  R2-(-5)R3

RESULT:

x1=8.45,        x2=-2.89,       
x3=1.23

Time Complexity?          O(n3)    



10/28/2013

http://numericalmethods.eng.usf.edu 14

27

LU Decomposition 
and 

Matrix Inversion

Chapter 10

28

Solve      A . x = b (system of linear equations)

Decompose A = L . U

*   

L : Lower Triangular Matrix      U : Upper Triangular Matrix 

0

0
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To solve [A]{x}={b}

[L][U]=[A]  [L][U]{x}={b}

Consider [U]{x}={d}

[L]{d}={b}

1. Solve [L]{d}={b} using forward substitution to get {d}

2. Use back substitution to solve [U]{x}={d} to get {x}

30

  



















333231

232221

131211

aaa

aaa

aaa

A

    bxA       bxUL 

[ U ][ L ]

































33

2322

131211

3231

21

00

0

1

01

001

u

uu

uuu

ll

l



10/28/2013

http://numericalmethods.eng.usf.edu 16



















































''

'

''

''

3

2

1

3

2

1

33

2322

131211

00

0

b

b

b

x

x

x

a

aa

aaa

31



















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

Gauss Elimination  

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Example:      A       =        L      .    U   
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l32 = -12/4= -3

Gauss Elimination

[ U ]
[ L ]

34

MATRIX INVERSE

A. A-1 = I
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Solve in n=3 major steps
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Solve each one 

using A=L.U method  e.g.
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Solve Problem 10.6. Solution file is available on the 
web.
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Special Matrices and Gauss-Seidel

Chapter 11

36

 Certain matrices have particular structures 
that can be exploited to develop efficient 
solution schemes (e.g. banded, symmetric)

 A banded matrix is a square matrix that has 
all elements equal to zero, with the exception 
of a band centered on the main diagonal. 

 Standard Gauss Elimination is inefficient in 
solving banded equations because 
unnecessary space and time would be 
expended on the storage and manipulation of 
zeros. 

 There is no need to store or process the zeros 
(off of the band) 
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Solving Tridiagonal Systems 

(Thomas Algorithm)
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A tridiagonal system has a bandwidth of 3

DECOMPOSITION

DO k = 2, n

ek = ek / fk-1

fk = fk - ek

gk-1

END DO

Time Complexity?

O(n)

vs.   O(n3)

38
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Tridiagonal Systems (cont.)
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Forward Substitution

d1 = r1

DO k = 2, n

dk = rk - ek dk-1

END DO

Back Substitution

xn = dn /fn

DO k = n-1, 1, -1

xk = (dk - gk . xk+1 )/fk
END DO

{ d }
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Cholesky Decomposition 
(for Symmetric Positive Definite† Matrices)
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Time Complexity:  

O(n3) but requires half the number of operations as standard Gaussian 

elimination.

† A positive definite matrix is one for which the product 

{X}T[A]{X} is greater than zero for all nonzero vectors X

LT means Transpose of 
L

40

**here Jacobi Iterative Method
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Choose an initial guess (i.e. all zeros) and Iterate until the equality is 
satisfied. 
No guarantee for convergence!      Each iteration takes O(n2) time!

Iterative methods provide an alternative to the elimination 
methods.
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Gauss-Seidel

 The Gauss-Seidel method is a commonly used iterative method.

 It is same as Jacobi technique except with one important difference: 

A newly computed x value (say xk) is substituted in the subsequent 
equations (equations   k+1, k+2, …, n) in the same iteration.

Example:  Consider  the 3x3 system below:

• First, choose initial guesses for the x’s. 

• A simple way to obtain initial guesses is 
to assume that they are all zero. 

• Compute new  x1 using the previous 
iteration values.

• New x1 is substituted in the equations 
to calculate x2 and x3

• The process is repeated for x2, x3, …
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42

Convergence Criterion for Gauss-Seidel Method

 Iterations are repeated until the convergence criterion is satisfied:

For all i, where j and j-1 are

the current and previous iterations.

 As any other iterative method, the Gauss-Seidel method has problems:

• It may not converge or  it converges very slowly.

 If the coefficient matrix A is Diagonally Dominant Gauss-Seidel is 
guaranteed to converge.

Diagonally Dominant  

 Note that this is not a necessary condition, i.e. the system may still have a 
chance to converge even if A is not diagonally dominant.
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Time Complexity:       Each iteration takes O(n2)


