
10/28/2013

http://numericalmethods.eng.usf.edu 1

http://www.pedram-payvandy.com 1

Numerical Methods for
Engineers

مدرس دکتر پدرام پیوندی

ریاضیات عالی پیشرفته

2

~ Linear Algebraic Equations ~

Gauss Elimination

Chapter 9

10/28/2013

http://numericalmethods.eng.usf.edu 2

3

Solving Systems of Equations

 A linear equation in n variables:

a1x1 + a2x2 + … + anxn = b

 For small (n ≤ 3), linear algebra provides several tools to solve

such systems of linear equations:

• Graphical method

• Cramer’s rule

• Method of elimination

 Nowadays, easy access to computers makes the solution of

very large sets of linear algebraic equations possible

4

Determinants and Cramer’s Rule

[A] : coefficient matrix    bxA 



















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

 


















333231

232221

131211

aaa

aaa

aaa

A

D

aab

aab

aab

x
33323

23222

13121

1 
D

aba

aba

aba

x
33331

23221

13111

2 
D

baa

baa

baa

x
33231

22221

11211

3 

D : Determinant of A matrix

10/28/2013

http://numericalmethods.eng.usf.edu 3

5

333231

232221

131211

aaa

aaa

aaa

D 

 


















333231

232221

131211

aaa

aaa

aaa

A

    BxA 

3231

2221

13

3331

2321

12

3332

2322

11A oft Determinan
aa

aa
a

aa

aa
a

aa

aa
aD 

Computing the
Determinant

23323322

3332

2322

11 aaaa
aa

aa
D 

22313221

3231

2221

13

23313321

3331

2321

12

aaaa
aa

aa
D

aaaa
aa

aa
D





6

Gauss Elimination

Solve Ax = b

Consists of two phases:

• Forward elimination

• Back substitution

Forward Elimination

reduces Ax = b to an upper
triangular system Tx = b’

Back substitution can then
solve Tx = b’ for x



































''

3

''

33

'

2

'

23

'

22

1131211

3333231

2232221

1131211

00

0

ba

baa

baaa

baaa

baaa

baaa

Forward
Elimination

Back
Substitution

11

2123131
1

'

22

3

'

23

'

2
2''

33

''

3
3

a

xaxab
x

a

xab
x

a

b
x









10/28/2013

http://numericalmethods.eng.usf.edu 4

7

Gaussian EliminationForward Elimination

x1 - x2 + x3 = 6
3x1 + 4x2 + 2x3 = 9
2x1 + x2 + x3 = 7

x1 - x2 + x3 = 6
0 +7x2 - x3 = -9
0 + 3x2 - x3 = -5

x1 - x2 + x3 = 6
0 7x2 - x3 = -9
0 0 -(4/7)x3=-(8/7)

-(3/1)

Solve using BACK SUBSTITUTION: x3 = 2 x2=-1 x1 =3

-(2/1) -(3/7)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

8

Back Substitution

1x0 +1x1 –1x2 +4x3 8=

– 2x1 –3x2 +1x3 5=

2x2 – 3x3 0=

2x3 4=x3 = 2

10/28/2013

http://numericalmethods.eng.usf.edu 5

9

1x0 +1x1 –1x2 0=

– 2x1 –3x2 3=

2x2 6=

Back Substitution

x2 = 3

10

1x0 +1x1 3=

– 2x1 12=

Back Substitution

x1 = –6

10/28/2013

http://numericalmethods.eng.usf.edu 6

1x0 9=

Back Substitution

x0 = 9

12

for i  n down to 1 do

/* calculate xi */

x [i]  b [i] / a [i, i]

/* substitute in the equations above */

for j  1 to i-1 do

b [j]  b [j]  x [i] × a [j, i]

endfor

endfor

Back Substitution
(* Pseudocode *)

Time Complexity?  O(n2)

10/28/2013

http://numericalmethods.eng.usf.edu 7

13

Gaussian EliminationForward Elimination

0








 


ii

ji

iijiji
a

a
aaa

14

Forward Elimination

4x0 +6x1 +2x2 – 2x3 = 8

2x0 +5x2 – 2x3 = 4

–4x0 – 3x1 – 5x2 +4x3 = 1

8x0 +18x1 – 2x2 +3x3 = 40

-(2/4)

M

U

L

T

I

P

L

I

E

R

S

-(-4/4)

-(8/4)

10/28/2013

http://numericalmethods.eng.usf.edu 8

15

4x0 +6x1 +2x2 – 2x3 = 8

+4x2 – 1x3 = 0

+3x1 – 3x2 +2x3 = 9

+6x1 – 6x2 +7x3 = 24

– 3x1

-(3/-3)

M

U

L

T

I

P

L

I

E

R

S

Forward Elimination

-(6/-3)

16

4x0 +6x1 +2x2 – 2x3 = 8

+4x2 – 1x3 = 0

1x2 +1x3 = 9

2x2 +5x3 = 24

– 3x1

??

M

U

L

T

I

P

L

I

E

R

Forward Elimination

10/28/2013

http://numericalmethods.eng.usf.edu 9

17

4x0 +6x1 +2x2 – 2x3 = 8

+4x2 – 1x3 = 0

1x2 +1x3 = 9

3x3 = 6

– 3x1

Forward Elimination

18

Gaussian Elimination
Operation count in Forward

Elimination

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

2n

2n

2n

2n

2n

2n

2n

2n

TOTAL

1st column: 2n(n-1) 
2n2

)(

6

)12)(1(
2

2)1(*2)2(*2...)1(22

:NELIMINATIO FORWARDfor Operations of # TOTAL

3

1

22222

nO

nnn

inn
n

i






 


2(n-1)2 2(n-2)2 …….

b1

1

b2

2b3

3

b4

4

b5

5
b6

6

b7

7

b6

6
b6

6

10/28/2013

http://numericalmethods.eng.usf.edu 10

19

**herePitfalls of Elimination Methods

Division by zero

It is possible that during both elimination and back-substitution phases a

division by zero can occur.

For example:

2x2 + 3x3 = 8 0 2 3

4x1 + 6x2 + 7x3 = -3 A = 4 6 7

2x1 + x2 + 6x3 = 5 2 1 6

Solution: pivoting (to be discussed later)

20

Pitfalls (cont.)

Round-off errors

 Because computers carry only a limited number of significant figures,

round-off errors will occur and they will propagate from one iteration to the

next.

 This problem is especially important when large numbers of equations (100

or more) are to be solved.

 Always use double-precision numbers/arithmetic. It is slow but needed for

correctness!

 It is also a good idea to substitute your results back into the original

equations and check whether a substantial error has occurred.

10/28/2013

http://numericalmethods.eng.usf.edu 11

ill-conditioned systems - small changes in coefficients result in large

changes in the solution. Alternatively, a wide range of answers can

approximately satisfy the equations.

(Well-conditioned systems – small changes in coefficients result in small

changes in the solution)

Problem: Since round off errors can induce small changes in the coefficients, these

changes can lead to large solution errors in ill-conditioned systems.

Example:

x1 + 2x2 = 10

1.1x1 + 2x2 = 10.4

x1 + 2x2 = 10

1.05x1 + 2x2 = 10.4

3 4
2.0

)4.10(2)10(2

)1.1(2)2(1

2 4.10

2 10

2

222

121

1 






 x

D

ab

ab

x

1 8
1.0

)4.10(2)10(2

)05.1(2)2(1

2 4.10

2 10

2

222

121

1 






 x

D

ab

ab

x

Pitfalls (cont.)

22

ill-conditioned systems (cont.) –
 Surprisingly, substitution of the erroneous values, x1=8 and x2=1, into the original

equation will not reveal their incorrect nature clearly:

x1 + 2x2 = 10 8+2(1) = 10 (the same!)

1.1x1 + 2x2 = 10.4 1.1(8)+2(1)=10.8 (close!)

IMPORTANT CONCLUSION:

An ill-conditioned system is one with a determinant close to zero

 If determinant D=0 then there are infinitely many solutions  singular system

 Scaling (multiplying the coefficients with the same value) does not change the
equations but changes the value of the determinant in a significant way.

However, it does not change the ill-conditioned state of the equations!

DANGER! It may hide the fact that the system is ill-conditioned!!

Pitfalls (cont.)

10/28/2013

http://numericalmethods.eng.usf.edu 12

23

How can we find out whether a system is ill-conditioned or not?
Not easy! Luckily, most engineering systems yield well-conditioned results!

Is the system ill-conditioned?
 One way to find out: First scale (normalize) each row such that no coefficient is

larger than 1. Then compute the determinant and check if it is close to zero.

 Another way: change the coefficients slightly and recompute & compare

COMPUTING THE DETERMINANT:

 Given an upper triangular sys. of equations

D=t11t22t33

In general, D=t11t22 … tnn

If pivoting is used then

D = t11t22…tnn(-1)p where p is the number of times the rows are pivoted

33

2322

131211

00

 0

t

tt

ttt

D 

Techniques for Improving Solutions

Use of more significant figures – double precision arithmetic

Pivoting
If a pivot element is zero, normalization step leads to division by zero. The
same problem may arise, when the pivot element is close to zero. Problem
can be avoided:

• Partial pivoting
Switching the rows below so that the largest element is the pivot element.

Go over the solution in: CHAP9e-Problem-11.doc

• Complete pivoting
• Searching for the largest element in all rows and columns then switching.

• This is rarely used because switching columns changes the order of x’s
and adds significant complexity and overhead  costly

Scaling
• used to reduce the round-off errors and improve accuracy

10/28/2013

http://numericalmethods.eng.usf.edu 13

25

Gauss-Jordan Elimination

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

a11

x22

0

x33

0

0

x44

0

0

0

x55

0

0

0

0

x66

x77

x88

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

b11

b22

b33

b44

b55

b66

b77

b66

b660 0 0 x99

26

Gauss-Jordan Elimination: Example







































































10

1

8

|

|

|

473

321

211

 :Matrix Augmented

10

1

8

473

321

211

3

2

1

x

x

x

1 1 2 | 8

 0 1 5 | 9

0 4 2| 14

 
 


 
   

R2  R2 - (-1)R1

R3  R3 - (3)R1

Scaling R2:

R2  R2/(-1)

R1  R1 - (1)R2

R3  R3-(4)R2

1 1 2 | 8

 0 1 5| 9

0 4 2| 14

 
 

 
 
   





















22

9

17

|

|

|

1800

510

701

 Scaling R3:

R3  R3/(18) 



















9/11

9

17

|

|

|

100

510

701



















222.1

888.2

444.8

|

|

|

100

010

001

R1  R1 - (7)R3

R2  R2-(-5)R3

RESULT:

x1=8.45, x2=-2.89,
x3=1.23

Time Complexity?  O(n3)

10/28/2013

http://numericalmethods.eng.usf.edu 14

27

LU Decomposition
and

Matrix Inversion

Chapter 10

28

Solve A . x = b (system of linear equations)

Decompose A = L . U

*

L : Lower Triangular Matrix U : Upper Triangular Matrix

0

0

10/28/2013

http://numericalmethods.eng.usf.edu 15

29

To solve [A]{x}={b}

[L][U]=[A]  [L][U]{x}={b}

Consider [U]{x}={d}

[L]{d}={b}

1. Solve [L]{d}={b} using forward substitution to get {d}

2. Use back substitution to solve [U]{x}={d} to get {x}

30

  



















333231

232221

131211

aaa

aaa

aaa

A

    bxA       bxUL 

[U][L]

































33

2322

131211

3231

21

00

0

1

01

001

u

uu

uuu

ll

l

10/28/2013

http://numericalmethods.eng.usf.edu 16



















































''

'

''

''

3

2

1

3

2

1

33

2322

131211

00

0

b

b

b

x

x

x

a

aa

aaa

31



















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

Gauss Elimination 


    bxA       bxUL 

[U] 


















1

01

001

3231

21

ll

lL

Coefficients used during the
elimination step

32




















































''

''

33

2322

131211

3231

21

333231

232221

131211

00

0

1

01

001

a

aa

aaa

ll

l

aaa

aaa

aaa

A

[L . U]

?32

11

31
31

11

21
21







l

a

a
l

a

a
l

10/28/2013

http://numericalmethods.eng.usf.edu 17

33



























































300

140

5521

134

012

001

20224

1192

5521 ..

Example: A = L . U













































0120

140

5521

20224

1192

5521 ..Coefficients

l21 = -2/-1= 2

l31 = 4/-1= -4







































300

140

5521

0120

140

5521 ..

Coefficients

l32 = -12/4= -3

Gauss Elimination

[U]
[L]

34

MATRIX INVERSE

A. A-1 = I



















































100

010

001

333231

232221

131211

333231

232221

131211

xxx

xxx

xxx

aaa

aaa

aaa



















































0

0

1

31

21

11

333231

232221

131211

x

x

x

aaa

aaa

aaa

Solve in n=3 major steps

1 2 3



















































0

1

0

32

22

12

333231

232221

131211

x

x

x

aaa

aaa

aaa



















































1

0

0

33

23

13

333231

232221

131211

x

x

x

aaa

aaa

aaa

Solve each one

using A=L.U method  e.g.





































0

0

1

31

21

11

x

x

x

LU

Solve Problem 10.6. Solution file is available on the
web.

10/28/2013

http://numericalmethods.eng.usf.edu 18

35

Special Matrices and Gauss-Seidel

Chapter 11

36

 Certain matrices have particular structures
that can be exploited to develop efficient
solution schemes (e.g. banded, symmetric)

 A banded matrix is a square matrix that has
all elements equal to zero, with the exception
of a band centered on the main diagonal.

 Standard Gauss Elimination is inefficient in
solving banded equations because
unnecessary space and time would be
expended on the storage and manipulation of
zeros.

 There is no need to store or process the zeros
(off of the band)

10/28/2013

http://numericalmethods.eng.usf.edu 19

37

Solving Tridiagonal Systems

(Thomas Algorithm)





































































4

3

2

1

4

3

2

1

44

333

222

11

r

r

r

r

x

x

x

x

fe

gfe

gfe

gf







































'

'

'

'

'

'

4

33

22

11

4

3

2

100

010

001

0001

f

gf

gf

gf

e

e

e
ULA

A tridiagonal system has a bandwidth of 3

DECOMPOSITION

DO k = 2, n

ek = ek / fk-1

fk = fk - ek

gk-1

END DO

Time Complexity?

O(n)

vs. O(n3)

38











































































4

3

2

1

4

3

2

1

4

33

22

11

4

3

2

100

010

001

0001

r

r

r

r

x

x

x

x

f

gf

gf

gf

e

e

e

'

'

'

'

'

'

Tridiagonal Systems (cont.)

























































4

3

2

1

4

3

2

1

4

3

2

100

010

001

0001

r

r

r

r

d

d

d

d

e

e

e

'

'

'

Forward Substitution

d1 = r1

DO k = 2, n

dk = rk - ek dk-1

END DO

Back Substitution

xn = dn /fn

DO k = n-1, 1, -1

xk = (dk - gk . xk+1)/fk
END DO

{ d }

























































4

3

2

1

4

3

2

1

4

33

22

11

d

d

d

d

x

x

x

x

f

gf

gf

gf

'

'

'

10/28/2013

http://numericalmethods.eng.usf.edu 20

Cholesky Decomposition
(for Symmetric Positive Definite† Matrices)





















44434241

43333231

42322221

41312111

][][

aaaa

aaaa

aaaa

aaaa

AA T







































44

4333

423222

41312111

44434241

333231

2221

11

][][

l

ll

lll

llll

llll

lll

ll

l

LLAA TT

 1,,2,1 ,,2,1for
1

1

2

1

1


 











k

j

kjkkkk

ii

i

j

kjijki

ki lalkink
l

lla

l >>

Time Complexity:

O(n3) but requires half the number of operations as standard Gaussian

elimination.

† A positive definite matrix is one for which the product

{X}T[A]{X} is greater than zero for all nonzero vectors X

LT means Transpose of
L

40

**here Jacobi Iterative Method

])([)()]([

xDAbDxxDAbDxbxDAD

a

a

a

D

aaa

aaa

aaa

AbAx







































1

33

22

11

333231

232221

131211

00

00

00

33

1

232

1

1313
3

22

1

323

1

1212
2

11

1

313

1

2121
1

a

xaxab
x

a

xaxab
x

a

xaxab
x

kk
k

kk
k

kk
k

 








 *

/

/

/





































































































3

2

1

3231

2321

1312

3

2

1

33

22

11

3

2

1

0

0

0

100

010

001

x

x

x

aa

aa

aa

b

b

b

a

a

a

x

x

x

Choose an initial guess (i.e. all zeros) and Iterate until the equality is
satisfied.
No guarantee for convergence! Each iteration takes O(n2) time!

Iterative methods provide an alternative to the elimination
methods.

10/28/2013

http://numericalmethods.eng.usf.edu 21

41

Gauss-Seidel

 The Gauss-Seidel method is a commonly used iterative method.

 It is same as Jacobi technique except with one important difference:

A newly computed x value (say xk) is substituted in the subsequent
equations (equations k+1, k+2, …, n) in the same iteration.

Example: Consider the 3x3 system below:

• First, choose initial guesses for the x’s.

• A simple way to obtain initial guesses is
to assume that they are all zero.

• Compute new x1 using the previous
iteration values.

• New x1 is substituted in the equations
to calculate x2 and x3

• The process is repeated for x2, x3, …

newold

newnew
new

oldnew
new

oldold
new

XX

a

xaxab
x

a

xaxab
x

a

xaxab
x

}{}{ 










33

2321313
3

22

3231212
2

11

3132121
1

42

Convergence Criterion for Gauss-Seidel Method

 Iterations are repeated until the convergence criterion is satisfied:

For all i, where j and j-1 are

the current and previous iterations.

 As any other iterative method, the Gauss-Seidel method has problems:

• It may not converge or it converges very slowly.

 If the coefficient matrix A is Diagonally Dominant Gauss-Seidel is
guaranteed to converge.

Diagonally Dominant 

 Note that this is not a necessary condition, i.e. the system may still have a
chance to converge even if A is not diagonally dominant.





n

ij
j

jiii aa
1

,

:i equation eachFor

X

sj

i

j

i

j

i
ia

x

xx
 b%100

1

,




Time Complexity: Each iteration takes O(n2)

