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Computers are great tools, 

however, without fundamental understanding of 

engineering problems, they will be useless. 
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The Engineering 

Problem Solving 

Process
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Newton’s 2nd law of Motion (**here)

 “The time rate change of momentum of a body is equal 

to the resulting force acting on it.”

 Formulated  as F = m.a

F  = net force acting on the body   

m = mass of the object (kg)    

a = its acceleration (m/s2)

 Some complex models may require more sophisticated 

mathematical techniques than simple algebra

• Example, modeling of a falling parachutist:

FU = Force due to air resistance  =   -cv (c = drag coefficient)

FD = Force due to gravity   =    mg

UD FFF 
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• This is a first order ordinary differential equation.

We would like to solve for v (velocity).

• It can not be solved using algebraic manipulation

• Analytical Solution:

If the parachutist is initially at rest (v=0 at t=0), 

using calculus dv/dt can be solved to give the result:

 tmce
c

gm
tv )/(1)( 

Independent 
variableDependent 

variable

ParametersForcing function

Analytical Solution

 tmce
c

gm
tv )/(1)( 

t (sec.) V (m/s)

0 0

2 16.40

4 27.77

8 41.10

10 44.87

12 47.49

∞ 53.39

If v(t) could not be solved analytically, then 
we need to use a numerical method to solve it

g = 9.8  m/s2 c =12.5 kg/s  
m = 68.1 kg
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This equation can be rearranged to yield

∆t = 2 sec

To minimize the error, use a smaller step size, ∆t
No problem, if you use a computer! 

Numerical Solution

t (sec.) V (m/s)

0 0

2 19.60

4 32.00

8 44.82

10 47.97

12 49.96

∞ 53.39
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t (sec.) V (m/s)

0 0

2 19.60

4 32.00

8 44.82

10 47.97

12 49.96

∞ 53.39

t (sec.) V (m/s)

0 0

2 16.40

4 27.77

8 41.10

10 44.87

12 47.49

∞ 53.39

m=68.1 kg   c=12.5 kg/s
g=9.8  m/s

 tmce
c

gm
tv )/(1)(  ttv

m

c
gtvtv

iii
 )]([)()( 1

∆t = 2 sec

Analytical

t (sec.) V (m/s)

0 0

2 17.06

4 28.67

8 41.94

10 45.60

12 48.09

∞ 53.39

∆t = 0.5 sec

t (sec.) V (m/s)

0 0

2 16.41

4 27.83

8 41.13

10 44.90

12 47.51

∞ 53.39

∆t = 0.01 sec

CONCLUSION: If you want to 
minimize the error, use a smaller 
step size, ∆t

Numerical   solutionvs.

Chapter 2

Programming and Software
Chapter 2

 Objective is how to use the computer as a tool to 
obtain numerical solutions to a given engineering 
model. There are two ways in using computers:

• Use available software

• Or, write computer programs to extend the capabilities 
of available software, such as Excel and Matlab.

 Engineers should not be tool limited, it is 
important that they should be able to do both!

 Computer programs are set of instructions that direct the 
computer to perform a certain task.

 To be able to perform engineering-oriented numerical 
calculations, you should be familiar with the following 
programming topics:

• Simple information representation (constants, variables, and type 
declaration)

• Advanced information representation (data structure, arrays, and 
records)

• Mathematical formulas (assignment, priority rules, and intrinsic 
functions)

• Input/Output

• Logical representation (sequence, selection, and repetition)

• Modular programming (functions and subroutines)

 We will focus the last two topics, assuming that you have 
some prior exposure to programming.

Structured Programming

 Structured programming is a set of rules that prescribe 

good style habits for programmer.

• An organized, well structured code

• Easily sharable

• Easy to debug and test

• Requires shorter time to develop, test, and update

 The key idea is that any numerical algorithm can be 

composed of using the three fundamental structures:

• Sequence, selection, and repetition 

Fig. 2.1
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 Sequence. 
Computer code 
must be 
implemented one 
instruction at a 
time, unless you 
instruct otherwise. 
The structure can 
be expressed as a 
flowchart or 
pseudocode.

Fig.2.2

 Selection. Splits 
the program’s flow 
into branches 
based on outcome 
of a logical 
condition.

Fig. 2.3

Fig. 2.4

 Repetition. A means to implement instructions repeatedly.

Figure 2.6 Modular Programming
 The computer programs can be divided into 

subprograms, or modules, that can be developed and 
tested separately. 

 Modules should be as independent and self contained 
as possible.

 Advantages to modular design are:

• It is easier to understand the underlying logic of smaller 
modules

• They are easier to debug and test

• Facilitate program maintenance and modification

• Allow you to maintain your own library of modules for 
later use
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Fig. 
2.7

EXCEL

 Is a spreadsheet that allow the user to enter and perform 
calculations on rows and columns of data.

 When any value on the sheet is changed, entire calculation 
is updated, therefore, spreadsheets are ideal for “what if?” 
sorts of analysis.

 Excel has some built in numerical capabilities including 
equation solving, curve fitting and optimization.

 It also includes VBA as a macro language that can be used 
to implement numerical calculations.

 It has several visualization tools, such as graphs and three 
dimensional plots.

Fig. 2.8

MATLAB

 Is a flagship software which was originally 

developed as a matrix laboratory. A variety 

of numerical functions, symbolic 

computations, and visualization tools have 

been added to the matrix manipulations.

 MATLAB is closely related to 

programming.

Fig. 2.9

Other Languages and Libraries

 Fortran 90 (IMSL)

 C++
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Approximations and Round-Off Errors

Chapter 3

Significant Figures

• Number of significant figures indicates precision. Significant digits of 
a number are those that can be used with confidence, e.g., the 
number of certain digits plus one estimated digit.

53,800 How many significant figures?

5.38 x 104 3

5.3800 x 104 5

Zeros are sometimes used to locate the decimal point not significant figures.
0.00001753 4
0.001753 4

• Numerical methods yield approximate results that are close to the 
exact analytical solution. 

• How confident we are in our approximate result ?   In other words,

“how much error is present in our calculation and is it tolerable?”

Identifying Significant Digits

• All non-zero digits are considered significant. For example, 91 has two 
significant figures, while 123.45 has five significant figures

• Zeros appearing anywhere between two non-zero digits are significant. 
Ex: 101.1002 has seven significant figures.

• Leading zeros are not significant.   Ex:  0.00052 has two significant figures.

• Trailing zeros in a number containing a decimal point are significant. 
Ex:  12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0. The number 

0.000122300 still has only six significant figures (the zeros before the 1 are 
not significant).  In addition, 120.00 has five significant figures. 

• The significance of trailing zeros in a number not containing a decimal point 
can be ambiguous. For example, it may not always be clear if a number like 

1300 is accurate to the nearest unit. Various conventions exist to address 
this issue.

Error Definitions

True error:       Et = True value – Approximation (+/-)

%
value True

ation– Approxim value True
    :error relativepercent  True

t
100

Approximate Error

• For numerical methods, the true value will be known 
only when we deal with functions that can be solved 
analytically. 

• In real world applications, we usually do not know the 
answer a priori.

Approximate Error  =  CurrentApproximation(i)  –
PreviousApproximation(i-1)

% 
ionApproximat

error eApproximat
      :Error Relative eApproximat

a
100

%100
rox.CurrentApp

Approx.) (Previous - Approx.)(Current 
       :Error Relative Approx.

a


Iterative approaches   (e.g. Newton’s method)

Computations are repeated until stopping criterion is satisfied

sa       Pre-specified % tolerance based on your 

knowledge of the solution. (Use absolute 
value)

If εs is chosen as:

Then the result is correct to at least n significant figures 
(Scarborough 1966)

)%10 (0.5
n)-(2

s 

!
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!32
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xxx
xe

n
x 

EXAMPLE 3.2:      Maclaurin series expansion

%05.0)%10 (0.5 3)-(2

x 

Calculate e0.5 (= 1.648721…) up to 3 significant figures. During the 
calculation process, compute the true and approximate percent relative 

errors at each step

Error tolerance

Count Result εt (%)  True εa (%)  Approx.

1 1 39.3

2 1.5 9.02 33.3

3 1.625 1.44 7.69

Terms

1

1+(0.5)

1+(.5)+(.5)2/2

1+(.5)+(.5)2/2+(.5)3/6 4 1.6458333 0.175 1.27

5 1.6484375 0.0172 0.158

6 1.648697917 0.00142 0.0158
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Round-off and Chopping Errors

 Numbers such as   p,   e,   or   √7 cannot be expressed by a fixed number 
of significant figures. Therefore, they can not be represented exactly by a 
computer which has a fixed word-length 

p = 3.1415926535….

 Discrepancy introduced by this omission of significant figures is called 
round-off or chopping errors.

 If p is to be stored on a base-10 system carrying 7 significant digits,

chopping :      p=3.141592 error:    t=0.00000065

round-off:      p=3.141593 error:    t=0.00000035

 Some machines use chopping, because rounding has additional 
computational overhead. 

38

Number 
Representation

86409
in Base-10

173 
in Base-2

The representation of   -173  on a 16-bit computer 
using the signed magnitude method

Computer representation of a floating-point 
number

em.b
exponent

Base of the number 

system used

mantissa

156.78       0.15678x103 

(in a floating point base-10 system)

Suppose only 4 
decimal places to be stored

 Normalize  remove the leading zeroes.

 Multiply the mantissa by 10 and lower the exponent by 1

0.2941 x 10-1

029411765.0
34

1


Additional 

significant figure 
is retained

0100294.0 

 Due to Normalization, absolute value of m is limited:

for base-10 system: 0.1  ≤  m <  1

for base-2 system: 0.5  ≤  m <  1

 Floating point representation allows both fractions and very large 
numbers to be expressed on the computer. However,

• Floating point numbers take up more room

• Take longer to process than integer numbers.

1
1

 m
b

Q:  What is the smallest positive 
floating point number that can be 

represented using a 7-bit word (3-bits 

reserved for mantissa).
What is the number?

(* Solve Example 3.4  page 61 *)

Another Exercise: What is the largest positive floating point number that can 
be represented using a 7-bit word (3-bits reserved for mantissa).
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Additional Notes on floating point numbers:

• Addition of two floating point numbers (normalization is needed)

• Multiplication

• Overflow / Underflow
very small  and very large numbers can not be represented using a fixed-

length mantissa/exponent representation, therefore overflow and underflow 

can occur while doing arithmetic with these numbers.

• Double precision arithmetic is always recommended

• The interval between Numbers increases as the numbers grow in 
magnitude

Chapter 4

Chapter 4

Truncation Errors and the Taylor 

Series
Chapter 4

 Non-elementary functions such as trigonometric, 

exponential, and others are expressed in an 

approximate fashion using Taylor series when their 

values, derivatives, and integrals are computed.

 Any smooth function can be approximated as a 

polynomial. Taylor series provides a means to predict 

the value of a function at one point in terms of the 

function value and its derivatives at another point.

http://www.pedram-payvandy.com http://numericalmethods.eng.usf.edu 46

Figure 4.1
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Example:

To get the cos(x) for small x:

If x=0.5

cos(0.5) =1-0.125+0.0026041-0.0000127+ … 

=0.877582

From the supporting theory, for this series, the error 

is no greater than the first omitted term.


!6!4!2

1cos
642 xxx

x

0000001.05.0
!8

8

 xfor
x
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 Any smooth function can be approximated as a 
polynomial.

f(xi+1) ≈ f(xi) zero order approximation, only 
true if xi+1 and xi are very close 
to each other.

f(xi+1) ≈ f(xi) + f′(xi) (xi+1-xi) first order
approximation, in form of a 
straight line

http://www.pedram-payvandy.com
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• Reminder term, Rn, accounts for all terms 

from (n+1) to infinity.

nth order approximation

http://www.pedram-payvandy.com

  is not known exactly, lies somewhere 
between xi+1> >xi .

 Need to determine f n+1(x), to do this you need 
f'(x).

 If we knew f(x), there wouldn’t be any need to 
perform the Taylor series expansion.

 However, R=O(hn+1), (n+1)th order, the order 
of truncation error is hn+1.

 O(h), halving the step size will halve the error.

 O(h2), halving the step size will quarter the 
error.

http://www.pedram-payvandy.com 52

53

 Truncation error is decreased by addition of terms to 

the Taylor series.

 If h is sufficiently small, only a few terms may be 

required to obtain an approximation close enough to 

the actual value for practical purposes.

http://www.pedram-payvandy.com
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Error Propagation

 fl(x) refers to the floating point (or 

computer) representation of the real number 

x. Because a computer can hold a finite 

number of significant figures for a given 

number, there may be an error (round-off 

error) associated with the floating point 

representation. The error is determined by 

the precision of the computer ().

http://www.pedram-payvandy.com

 Suppose that we have a function f(x) that is 

dependent on a single independent variable x. xfl is an 

approximation of x and we would like to estimate the 

effect of discrepancy between x and xfl on the value 

of the function:

))(()()(

sorder termhigher  and second the

dropping ),f(xnear  f(x) compute  toseriesTaylor Employ 

unknown are )( and f(x) both)()()(

fl

flflfl

flflfl

xxxfxfxf

xfxfxfxf




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Figure 4.7

http://www.pedram-payvandy.com

Also, let t, the fractional relative error, be the error 

associated with fl(x). Then

Rearranging, we get

 


tt where
x

xxfl
Machine epsilon, 

upper boundary

)1( 



t

t

xxfl

xxxfl




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 Case 1: Addition of x1 and x2 with associated errors 

t1 and t2 yields the following result:

xfl1=x1(1+t1)

xfl2=x2(1+t2)

xfl1+xfl2=t1 x1+t2 x2+x1+x2

1 2 1 2 1 1 2 2

1 2 1 2

( ) ( ) ( )

100%

fl flt t t
x x x x x x

x x x x

     
 

 

•A large error could result from addition if x1 and x2 are 

almost equal magnitude but opposite sign, therefore one 

should avoid subtracting nearly equal numbers.

http://www.pedram-payvandy.com
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 Since t1, t2 are both small, the term t1t2 should be 
small relative to t1+t2. Thus the magnitude of the 
error associated with one multiplication or division 
step should be t1+t2.

t1 ≤ (upper bound)

 Although error of one calculation may not be 
significant, if 100 calculations were done, the error is 
then approximately 100. The magnitude of error 
associated with a calculation is directly proportional 
to the number of multiplication steps. 

http://www.pedram-payvandy.com

 Overflow: Any number larger than the largest number that can 
be expressed on a computer will result in an overflow.

 Underflow (Hole) : Any positive number smaller than the 
smallest number that can be represented on a computer will 
result an underflow.

 Stable Algorithm: In extended calculations, it is likely that 
many round-offs will be made. Each of these plays the role of 
an input error for the remainder of the computation, impacting 
the eventual output. Algorithms for which the cumulative 
effect of all such errors are limited, so that a useful result is 
generated, are called “stable” algorithms. When accumulation 
is devastating and the solution is overwhelmed by the error, 
such algorithms are called unstable.

http://www.pedram-payvandy.com

Figure 4.8
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Solution Methods:
Analytical Solutions

Analytical solutions are available for special equations 
only. 

a

acbb
roots

cxbxa

2

4

0ofsolutionAnalytical

2

2






0for   available issolution analytical No  xex
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Graphical Illustration

 Graphical illustration are useful to provide an initial 
guess to be used by other methods

0.6

]1,0[





 

root

rootThe

ex

Solve

x

xe

x

Root

1         2

2

1

http://www.pedram-payvandy.com

Bracketing/Open Methods

 In bracketing methods, the method starts 
with an interval that contains the root and a 
procedure is used to obtain a smaller interval 
containing the root.

• Examples of bracketing methods : Bisection method

 In the open methods, the method starts with 
one or more initial guess points. In each 
iteration a new guess of the root is obtained.

http://www.pedram-payvandy.com
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Solution Methods
Many methods are available to solve nonlinear equations

 Bisection Method

 Newton’s Method

 Secant Method

 Fixed point iterations

 False position Method

• Muller’s Method

• Bairstow’s Method

• ……….

These will be 

covered.
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