

- Computer programs are set of instructions that direct the computer to perform a certain task.
- To be able to perform engineering-oriented numerical calculations, you should be familiar with the following programming topics:
 - Simple information representation (constants, variables, and type declaration)
 - Advanced information representation (data structure, arrays, and records)
 - Mathematical formulas (assignment, priority rules, and intrinsic functions)
 - · Input/Output
 - · Logical representation (sequence, selection, and repetition)
 - Modular programming (functions and subroutines)
- We will focus the last two topics, assuming that you have some prior exposure to programming.

SYMBOL	NAME	FUNCTION
	Terminal	Represents the beginning or end of a program.
	Flowlines	Represents the flow of logic. The humps on the horizontal arrow indicate the it passes over and does not connect with the vertical flowlines.
	Process	Represents calculations or data manipulations.
	Input/output	Represents inputs or outputs of data and information.
\diamond	Decision	Represents a comparison, question, or decision that determines alternative paths to be followed.
	Junction	Represents the confluence of flowlines.
Ŭ	Off-page connector	Represents a break that is continued on another page.
	Count-controlled	Used for loops which repeat a prespecified number of iterations.

FUNCTION Euler(dt, ti, tf, yi) t = ti	Fig. 2.7
y = yi	
h = dt	
DO	
IF t + dt > tf THEN	
h = tf - t	
ENDIF	
dydt = dy(t, y)	
$y = y + dydt \star h$	
t = t + h	
$IF t \ge tf EXIT$	
ENDDO	
Euler = y	
END	

(a) Pseudocode	(b) Excel VBA
IF/THEN: IF condition THEN True block ENDIF	If b <> 0 Then r1 = -c / b End If
IF/THEN/ELSE: IF condition THEN True block ELSE False block BNDF	If $a < 0$ Then b = Sqr(Abs(a)) Else b = Sqr(a) End If
IETTERATE SELEC IF condition they ESETE condition Ritock ESETE conditions Bitock ESET ESET Bitock Bitock Bitock Bitock	If class = 1 Then x = x + 6 Elseff class < 1 Then x = x - 6 Elseff class < 10 Then x = x - 32 Else x = x - 64 End If
CABE: SELECT CASE Test Expression CASE Value; Block; allock, allock, CASE Value; CASE Value; CASE Value; CASE Value; CASE Value; Block; Block; Block; Block; Block; CASE VALUE; CASE VALUE	Helect Case a + b Case Ia < -50 x = -5 Case Ia < 0 + b) / 10 x = (a + b) / 10 x = (a + b) / 10 Case Rise x = 5 End Select
DOEXIT: DO Blocki IF condition EXIT Blocki ENDIF	Do i = i + 1 If $i \ge 10$ Then Exit Do $j = i\pi x$ Loop

(a) Pseudocode	(b) MATLAB
IF/THEN: IF condition THEN True block ENOIF	if b $-= 0$ e1 = $-\alpha$ / b; end
IF/THEN/ELSE: IF condition THEN True block ELSE False block BDDF	<pre>if a < 0 b = nqrt(abs(a)); else b = nqrt(a); end</pre>
IETTERATE DEEP: IF condition TRD/ Riceks ESETF condition Riceks ESETF conditions Riceks ESEF Blocks DDDF	if class == 1 x = x - 0 olass = x - 0 shast class < 10 x = x - 2 olass = x - 0 x = x - 32 olass = x - 32
CASE: CASE Test Expression CASE Value, Block, Bloc	$ \begin{array}{l} \mbox{setuple} a + b \\ \mbox{case } 1 \\ \mbox{$\kappa = -5_1$} \\ \mbox{case } 2 \\ \mbox{$\kappa = -5_1$} \\ \mbox{$\kappa = -5_1$} \\ \mbox{case } 3 \\ \mbox{$\kappa = -5_1$} \\ \mbox{$\kappa = -5_1$} \\ \mbox{end} \end{array} $
DOEXIT. DO Blocki JF condition EXIT Blocki ENDIF	while (1) $i = i + 1_f$ $if i \ge 10$, break, end $j = i*x_f$ end
COUNT-CONTROLLED LOOP: DOFOR i = start, finish, step Block	for $i = 1:10:2$ M = M + 4i

		alauria cori	sangsoviji s	- (841) - 7
EXAMPLE 3.2:	Md	ciaurin serie	es expansiol	7
$e^x =$	1+x+	$+\frac{x^2}{2}+\frac{x^3}{3!}$	$+\ldots+\frac{x^n}{n!}$	
Calculate $e^{0.5}$ (= 1.6 calculation process, errors at each step	648721) compute	up to 3 signific the <i>true</i> and <i>a</i> ,	ant figures. Dui oproximate perc	ring the cent relative
Error tolerand	e <	→ E =	$=(0.5 \times 10^{(2-3)})$	0% = 0.05%
Error toleranc	e K —	\rightarrow \mathcal{E}_{x}	= (0.5×10 ⁽²⁻³⁾))% = 0.05%
Error toleranc	e —	$\mathcal{E}_{x} =$ Result	$= (0.5 \times 10^{(2-3)})$ $\varepsilon_t (\%) \text{ True}$	0% = 0.05% ε_a (%) Approx.
Error toleranc	count	$\mathcal{E}_{x} =$ Result	$= (0.5 \times 10^{(2-3)})$ $\epsilon_t (\%) \text{ True}$ 39.3	0% = 0.05% ε_a (%) Approx.
Error tolerance Terms 1 1+(0.5)	Count	$\mathcal{E}_{x} =$ Result 1 1.5	$= (0.5 \times 10^{(2-3)})$ $\epsilon_{t} (\%) \text{ True}$ 39.3 9.02	0% = 0.05% ε_a (%) Approx.
Terms 1 1+(0.5) 1+(.5)+(.5)²/2	Count 1 2 3	$\mathcal{E}_{x} =$ Result 1 1.5 1.625	$= (0.5 \times 10^{(2-3)})$ $\frac{\varepsilon_t (\%) \text{ True}}{39.3}$ 9.02 1.44	$\delta = 0.05\%$ $\varepsilon_a (\%) \text{ Approx.}$ 33.3 7.69
Terms 1 1+(0.5) 1+(.5)+(.5)²/2 1+(.5)+(.5)²/2+(.5)²/6	Count 1 2 3 4	ε _x = Result 1 1.5 1.625 1.6458333	$= (0.5 \times 10^{(2-3)})$ $\varepsilon_{t} (\%) \text{ True}$ 39.3 9.02 1.44 0.175	0% = 0.05% ε_a (%) Approx. 33.3 7.69 1.27
Error tolerance 1 1+(0.5) 1+(.5)+(.5) ² /2 1+(.5)+(.5) ² /2+(.5) ² /6	Count 1 2 3 4 5	<i>E</i> _x = Result 1 1.5 1.625 1.6458333 1.6484375	$= (0.5 \times 10^{(2-3)})$ $= \epsilon_t (\%) \text{ True}$ 39.3 9.02 1.44 0.175 0.0172	0% = 0.05% $\varepsilon_a (\%) \text{ Approx.}$ 33.3 7.69 1.27 0.158

Truncation Errors and the Taylor Series Chapter 4

- Non-elementary functions such as trigonometric, exponential, and others are expressed in an approximate fashion using Taylor series when their values, derivatives, and integrals are computed.
- Any smooth function can be approximated as a polynomial. Taylor series provides a means to predict the value of a function at one point in terms of the function value and its derivatives at another point.

 Any smooth f polynomial 	unction can be approximated as a
$f(x_{i+1}) \approx f(x_i)$	<i>zero order</i> approximation, only true if x_{i+1} and x_i are very close to each other.
$f(x_{i+1}) \approx f(x_i)$	+ $f'(x_i) (x_{i+1}-x_i)$ first order approximation, in form of a straight line

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''}{2!}(x_{i+1} - x_i)^2 + \dots$$
$$+ \frac{f^{(n)}}{n!}(x_{i+1} - x_i)^n + R_n$$
$$(x_{i+1} - x_i) = h \qquad step \ size \ (define \ first)$$
$$R_n = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!} h^{(n+1)}$$
$$\cdot \text{Reminder term, } R_n, \text{ accounts for all terms from } (n+1) \ to \ infinity.$$

F/x)=+

- ε is not known exactly, lies somewhere between $x_{i+1} > \varepsilon > x_i$.
- Need to determine fⁿ⁺¹(x), to do this you need f(x).
- If we knew f(x), there wouldn't be any need to perform the Taylor series expansion.
- However, R=O(hⁿ⁺¹), (n+1)th order, the order of truncation error is hⁿ⁺¹.
- O(h), halving the step size will halve the error.

http://www.pedram-payvandy.com

• O(h²), halving the step size will quarter the error.

F/x)=-

Suppose that we have a function f(x) that is dependent on a single independent variable x. x_{fl} is an approximation of x and we would like to estimate the effect of discrepancy between x and x_{fl} on the value
 of the function:

 $\Delta f(x_{\beta}) = |f(x) - f(x_{\beta})| \quad \text{both } f(x) \text{ and } f(x_{\beta}) \text{ are unknown}$ Employ Taylor series to compute f(x) near $f(x_{\beta})$, dropping the second and higher order terms $f(x) - f(x_{\beta}) \cong f'(x_{\beta})(x - x_{\beta})$

• Since ε_{t1} , ε_{t2} are both small, the term $\varepsilon_{t1}\varepsilon_{t2}$ should be Overflow: Any number larger than the largest number that can . small relative to $\varepsilon_{t1} + \varepsilon_{t2}$. Thus the magnitude of the be expressed on a computer will result in an overflow. error associated with one multiplication or division Underflow (Hole) : Any positive number smaller than the step should be $\varepsilon_{t1} + \varepsilon_{t2}$. smallest number that can be represented on a computer will result an underflow. Stable Algorithm: In extended calculations, it is likely that $\varepsilon_{t1} \leq \varepsilon$ (upper bound) many round-offs will be made. Each of these plays the role of an input error for the remainder of the computation, impacting the eventual output. Algorithms for which the cumulative effect of all such errors are limited, so that a useful result is Although error of one calculation may not be significant, if 100 calculations were done, the error is generated, are called "stable" algorithms. When accumulation then approximately 100ε. The magnitude of error is devastating and the solution is overwhelmed by the error, associated with a calculation is directly proportional such algorithms are called unstable. to the number of multiplication steps.

