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(f) Part 7: Ordinary differential equations
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Newton’s 2" law of Motion (**here) |

= “The time rate change of momentum of a body is equal
to the resulting force acting on it.”

= Formulated as  F=m.a
F =net force acting on the body
m = mass of the object (kg)
a = its acceleration (m/s?)

= Some complex models may require more sophisticated
mathematical techniques than simple algebra
- Example, modeling of a falling parachutist:
F=F,+F,

Fy = Force due to air resistance = -cv  (c =drag coefficient)
Fp =Forcedueto gravity = mg

- hitp://www.pedram-payvandy.com

Analytical Solution [

V(t) _ gm (1 e—(c/m)t )._If v(t) could not be solved analytically, then
. c X we need to use a numerical method to solve it

g=9.8 m/s2 c=12.5kg/s

m = 68.1 kg Terminal velocity
t (sec.) V (m/s) [
0 0
40
2 16.40
4 27.77 £ L
8 41.10 -
20 —
10 44.87
12 47.49 L
w 53.39
0 1 1 1 1 1 1
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Problem
definition

Mathematical

THEORY ==t~ DATA

qraphics, etc.

Numeric or
graphic results

Societal interfaces:
scheduling, optimization,
communication,
public interaction,
ote.

Implemantation

8 http://www.pedram-payvandy.com
dv L F + This is a first order ordinary differential equation.
dt & m We would like to solve for v (velocity).
F = FD + FU - It can not be solved using algebraic manipulation
Fp =mg
l ", = —cv + Analytical Solution:
V- mg—cv If the parachutist is initially at rest (v=0 at +=0),
dt = T using calculus dv/dt can be solved to give the result:
Independent
dv c Dependent variable
variable

c

Forcing function Parameters

/
dt m V V/(t) _ @ (1_ e—@)t )

Numerical Solution
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dv AV _ v(ti,)-v(t) dv Jim Av

dtoAt o, -t Tdt Ao At

41T

V(t,) - v(t) _

Cc
——V(ti
e g rnV()

RUm

i+ N

This equation can be rearranged to yield
C
V(ti) =Vv(t)+[g _Hv(t‘ .. —t)

At = 2 sec




Analyticall l Numerical solutlonl
m=68.1kg c=12.5kg/s

t (sec.) V (m/s) t (sec.) V (m/s) t(sec.) V (m/s) t(sec.) V (m/s)
0 0

2 16.40

4 271.77

8 41.10

10 44.87

12 47.49

& 53.39
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Programming and Software
Chapter 2

= Objective is how to use the computer as a tool to
obtain numerical solutions to a given engineering
model. There are two ways in using computers:
Use available software
- Or, write computer programs to extend the capabilities
of available software, such as Excel and Matlab.
= Engineers should not be tool limited, it is
important that they should be able to do both!

Structured Programming

= Structured programming is a set of rules that prescribe
good style habits for programmer.
. An organized, well structured code
Easily sharable
Easy to debug and test
Requires shorter time to develop, test, and update
= The key idea is that any numerical algorithm can be
composed of using the three fundamental structures:
Sequence, selection, and repetition
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Chapter 2

= Computer programs are set of instructions that direct the

computer to perform a certain task.

= To be able to perform engineering-oriented numerical

calculations, you should be familiar with the following
programmlng topics:

Simple information representation (constants, variables, and type

declaration)

- Advanced information representation (data structure, arrays, and
records)
Mathematical formulas (assignment, priority rules, and intrinsic
functions)

Input/Output
Logical representation (sequence, selection, and repetition)
Modular programming (functions and subroutines)

. We will focus the last two topics, assuming that you have

some prior exposure to programming.

Fig. 2.1
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SYMBOL NAME FUNCTION

Terminal Represents the beginning or end of a program.

it passes over and does not connect with the vertical flowlines.

Process Represents ions or data

Input/output Represents inputs or outputs of data and information.

paths to be followed.
Junction Represents the confluence of flowlines.

Off-page Represents a break that is continued on another page.
connector

0=-¢NN.0

loop

Flowlines Represents the flow of logic. The humps on the horizontal arrow indicate tha

Decision Represents a comparison, question, or decision that determines alternative

Count-controlled  Used for loops which repeat a prespecified number of iterations.




= Sequence. Fig.2.2

Instruction,

Computer code
must be
implemented one

instruction at a Instruction,

* time, unless you Instruction,
instruct otherwise. Instructions

" The structure can Instructiony

be expressed as a

flowchart or
pseudocode.
(a) Flowchart  (b) Pseudocode
19
Flowchart Pseudocode Flg. 2.4

vaiue f ‘ ‘ s | ‘
= 5
(5 CASE atruicturs (SELECT ar SWITCH)
Figure 2.6
Flowchart Pseudocode
True - i = start
i>finish

? Ai=i+step

DOFOR i = start, finish, step
False Block

ENDDO
Block
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Fig. 2.3
Flowchart Pseudocode

= Selection. Splits Y

the program’s flow Eondiion -T2

; g

into branches

based on outcome [[True Biock |

of a logical

condition.
T (a) Single-alternative structure (IF/THEN)

Falso <~ ‘ o True
[VFa!sf Bjoclf} ;Tms gl?ck J

O

(b) Double-alternative structure (IF/THEN/ELSE)

= Repetition. A means to implement instructions repeatedly.

Flowchart

Pseudocode

Do
Block,
IF condition EXIT
Block,

ENDDO

Modular Programming

= The computer programs can be divided into
subprograms, or modules, that can be developed and
tested separately.

= Modules should be as independent and self contained
as possible.

= Advantages to modular design are:

. ltis easier to understand the underlying logic of smaller
modules

. They are easier to debug and test
. Facilitate program maintenance and modification

- Allow you to maintain your own library of modules for
later use

9/11/2014
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FUNCTION Eulercdt, ti. tf, yi) Fig.
t = ti 2.7
P EXCEL
h = dt
e Is a spreadsheet that allow the user to enter and perform
_ L}
= hL :' [de = [2 £ THEN calculations on rows and columns of data.
END[Fi i i = When any value on the sheet is changed, entire calculation
is updated, therefore, spreadsheets are ideal for “what if?”
dydt = dy(t, y) sorts of analysis.
Y =y + dydt * h = Excel has some built in numerical capabilitiesincluding
t =t + h equation solving, curve fitting and optimization.
IF t = tf EXIT = |t also includes VBA as a macro language that can be used
ENDDO to implement numerical calculations.
Euler = y = It has several visualization tools, such as graphs and three
END dimensional plots.

(1) Excol VBA

Fig. 2.8 0" :
m.m s MATLAB

e g - = Is a flagship software which was originally
developed as a matrix laboratory. A variety
o i of numerical functions, symbolic
= - P— computations, and visualization tools have
s been added to the matrix manipulations.

= MATLAB is closely related to
programming.

DOEXIT:

Bigr 2 C m— et
L e e Other Languages and Libraries
e, —— - Fortran 90 (IMSL)
j‘:‘l ’ s C++

http://numericalmethods.eng.usf.edu



Approximations and Round-Off Errors

Chapter 3

Identifying Significant Digits

All non-zero digits are considered significant. For example, 91 has two
significant figures, while 123.45 has five significant figures

Zeros appearing anywhere between two non-zero digits are significant.
Ex: 101.1002 has seven significant figures.

Leading zeros are not significant. Ex: 0.00052 has two significant figures.

Trailing zeros in a number containing a decimal point are significant.

Ex: 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0. The number
0.000122300still has only six significant figures (the zeros before the 1 are
not significant). In addition, 120.00 has five significant figures.

The significance of trailing zeros in a number not containing a decimal point
can be ambiguous. For example, it may not always be clear if a number like
1300 is accurate to the nearest unit. Various conventions exist to address
this issue.

Iterative approaches (e.g. Newton’s method) I

Approx. Relative Error: ¢, :}(

Current Approx.) - (Previous Approx.) ‘xlOO%
CurrentApprox. ‘

Computations are repeated until stopping criterion is satisfied |

- ifi 0
|g | < LS Pre-specified % toleraljce based on your
a S knowledge of the solution. (Use absolute
value)

If & is chosen as: £, =(0.5x 10(2-n))%

Then the result is correct to at /east n significant figures

(Scarborough 1966)

http://numericalmethods.eng.usf.edu

* Numerical methods yield approximateresults that are close to the
exact analytical solution.

* How confident we are in our approximate result ? In other words,
“how much error is present in our calculation and is it tolerable?”

Significant Figures

« Number of significant figures indicates precision. Significant digits of
a number are those that can be used with confidence, e.g., the
number of certain digits plus one estimated digit.

53,800 How many significant figures?

5.38 x 10* 3
5.3800 x 10* 5

Zeros are sometimes used to locate the decimal point not significant figures.

0.00001753 a
0.001753 4

Error Definitions
True error E; = True value — Approximation (+/-)

True percent relative error: & = \True Wallie = Ayo tlOn‘xlOO%
| True value |

Approximate Error

e For numerical methods, the true value will be known
only when we deal with functions that can be solved
analytically.

« In real world applications, we usually do not know the
answer a priori.

Approximate Relative Error: ¢ = Approximate error

— x100%
a Approximation

EXAMPLE 3.2: Maclaurin series expansion
2 3 n
e xS X
2 3! n!

Calculate e?? (= 1.648721...) up to 3 significant figures. During the
calculation process, compute the trve and approximate percent relative
errors at each step

Error tolerance ——— &, =(0.5x10%%)% = 0.05%

Terms Count | Result
1
1+(0.5)
1+(5)+(5)22
1+(.5)+(5)212+(5)%/6

& (%) True | &,(%) Approx.
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Round-off and Chopping Errors

= Numberssuchas =, e, or \7 cannotbe expressed by a fixed number
of significant figures. Therefore, they can not be represented exactly by a
computer which has a fixed word-length

n=3.1415926535. ...

= Discrepancy introduced by this omission of significant figures is called
round-off or chopping errors.

= If 7t is to be stored on a base-10 system carrying 7 significant digits,
chopping: 7=3.141592 error:  &=0.00000065
round-off:  ©=3.141593 error:  &=0.00000035

= Some machines use chopping, because rounding has additional
computational overhead.

The representation of -173 on a 16-bit computer
using the

o s o o e

Number
Sign

156.78 » » » 0.15678x103
(in a floating point base-10 system)

Suppose only 4
decimal places to be stored

0.0294x10°

1 0020411765
34

» Normalize @ remove the leading zeroes.
= Multiply the mantissaby 10 and lower the exponentby 1
0.2941 x 101

Additional
significant figure
is retained

http://numericalmethods.eng.usf.edu

* 10° 107 10" 10°
Number 1 TR Foe1p
Representation 8 6 4 0 9

o f= 2

0x 10= 0

86409 4% 100= 400

in Base-10 (a) 6 1,000= 6,000

8 % 10,000 = 80,000

86,409

it

27 28 25 2¢ 3 22 1 20
NN 1 (R 1 (1 [ A
173 1 0 1 0 1 1 0 1
in Base-2 \\¥71 1= 1
0 2= 0
1 4= 4
1 8= 8
0x 16= 0
1 32= 32
b) 0x 64= 0
- 1% 128 =128

173

Computer representation of a floating-point
number

Signed
[ 2xponem )
I l l—— Mantissa—-‘

Sign

«— exponent
m.be
/'

mantissa
Base of the number

system used

= Due to Normalization, absolute value of m is limited: 1
b <m<1

for base-10system: 0.1
for base-2 system: 0.5

m<1
m< 1

IAIA

= Floating point representation allows both fractions and very large
numbers to be expressed on the computer. However,
Floating point numbers take up more room
. Take longer to process than integer numbers.

2V 20 27V 22 20

—‘_v_.*#
t Magnitude

Q: What is the smallest positive
floating point number that can be
represented using a 7-bit word (3-bits

reserved for mantissa). Sign of  Sign of Strnaniliea
What is the number? number: exponent

Magnitude
(* Solve Example 3.4 page 61 *) of exponent

9/11/2014



Truncation Errors and the Taylor

Series
Chapter 4
= Non-elementary functions such as trigonometric,
exponential, and others are expressed in an
approximate fashion using Taylor series when their
values, derivatives, and integrals are computed.
= Any smooth function can be approximated as a
polynomial. Taylor series provides a means to predict
the value of a function at one point in terms of the
function value and its derivatives at another point.

http://www.pedram-payvandy.com

Sl
Slx)
Zero order ® flx,. 1) ~ flx)
LOIS F6a 1) = SL5) + Fh
05l S q) = S + f)h + f‘;“;') "
Sl 4 1)
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Chapter 4

Chapter 4

fign) = fou) + £ (e = x) + %m -x)
r(3) (1) (v,
! (x')(xm —x) et )
3! n!

(g1 = x)" + Ry

B f(n+l)(ag—)

n+l
U (H-‘rl)f )

(Xig1 — X

http://numercaimethods.eng.usf.edu 46

Example:

To get the cos(x) for small x:

x2 x* xt
cosx=1-—+———+

20 4 6l
If x=0.5

T c0s(0.5) =1-0.125+0.0026041-0.0000127+ ..

=0.877582

From the supporting theory, for this series, the error
is no greater than the first omitted term.

8
o for x=0.5 =0.0000001

http://wwwpedram-payvandy.com



= Any smooth function can be approximated as a
polysetial—es
f(xi),) = f(x;) zero order approximation, jlonly

true if x;,, and x; are very close

to each other.

f(Xi+1) =~ f(Xl) + f(Xl) (Xi+1-Xi) first order
approximation, in form of a
straight line

http://www.pedram-payvandy.com

= ¢ is not known exactly, lies somewhere
between Xx;,;>¢ >X;

= Need to determine f "*1(x), to do this you need
f(x).

= If we knew f(x), there wouldn’t be any need to
perform the Taylor series expansion.

= However, R=0(h"1), (n+1)® order, the order
of truncation error is hnt1,

= O(h), halving the step size will halve the error.

= O(h?), halving the step size will quarter the
error.

hitp://www.pedram-payvandy.com

_k

flx) p
&) = 7

Ry

53
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nt" order approximation
"

F ) = F )+ R (K = X) + (X = 4)? ..

2!
f (n)
+7(Xi+1 - Xi)n + Rn
n!
(Xiz1~X)=h step size (define first)
— f () (8) h(n+1)
" (n+1)!

» Reminder term, R,,, accounts for all terms
from (n+1) to infinity.

http://www.pedram-payvandy.com

Flxie1) = flx)

" ®
Ro = flxh + / ) + wh‘ e Ry = flxph

T 3!

flx)

Ro

)

52

= Truncation error is decreased by addition of terms to
the Taylor series.
= If his sufficiently small, only a few terms may be
required to obtain an approximation close enough to
* the actual value for practical purposes.

|
D

5 B2 e

Sxin) = flx) — flh +

fo) = fi D _ Vi

Fegy= i ’

http://www.pedram-payvandy.com



1)

= Suppose that we have a function f(x) that is
dependent on a single independent variable x. x;is an
approximation of x and we would like to estimate the
effect of discrepancy between x and x; on the value
of the function:

AT (X)) ;iT(X)— I(X")‘ bothf(x) and f (x;) are unknown
Employ Tay lorseries tocomputef(x) near f(x,), dropping
thesecond and higher order terms
f (X) i (Xfl) = f'(X")(X = Xﬂ)

hitp://www.pedram-payvandy.com

Also, let g, the fractional relative error, be the error
associated with fl(x). Then

_ Machine epsilon,

XﬂX_X —¢ where ¢ S@/ upper boundary
IXfl — X = &]X
xfl = x(&, +1)

http://www.pedram-payvandy.com
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Error Propagation

= fl(x) refers to the floating point (or
computer) representation of the real number
X. Because a computer can hold a finite
number of significant figures for a given
number, there may be an error (round-off
error) associated with the floating point
representation. The error is determined by
the precision of the computer (g).

http://www.pedram-payvandy.com

True error
@Ay
Estimated error

I
1
1
1
1
|
|
|
|
1
1
L
x

http://www.pedram-payvandy.com

= Case 1: Addition of x, and x, with associated errors
&y and &, yields the following result:

X=X (1+&y)
Xip=Xo(1+&p)

l Xeig HXpp =€ X1 Tep Xo X1 +X,
1

& _ (Xq,) +(Xq,) = (X +X,) _ fuXitEnX
100% X+ X, 2%

+A large error could result from addition if x, and x,are
almost equal magnitude but opposite sign, therefore one
should avoid subtracting nearly equal numbers.

http://www.pedram-payvandy.com
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= Since g, &, are both small, the term &, should be
small relative to &,+¢&,. Thus the magnitude of the
error associated with one multiplication or division
step should be & +¢;,.

&y <¢ (upper bound)

= Although error of one calculation may not be
significant, if 100 calculations were done, the error is
then approximately 100¢. The magnitude of error
associated with a calculation is directly proportional
to the number of multiplication steps.

http://www.pedram-payvandy.com

O

Point of
diminishing
returns

log error

= Overflow: Any number larger than the largest number that can
be expressed on a computer will result in an overflow.

= Underflow (Hole) : Any positive number smaller than the
smallest number that can be represented on a computer will
result an underflow.

= Stable Algorithm: In extended calculations, it is likely that
many round-offs will be made. Each of these plays the role of
an input error for the remainder of the computation, impacting
the eventual output. Algorithms for which the cumulative
effect of all such errors are limited, so that a useful result is
generated, are called “stable” algorithms. When accumulation
is devastating and the solution is overwhelmed by the error,
such algorithms are called unstable.

http://www.pedram-payvandy.com

Solution Methods:
Analytical Solutions

Analytical solutions are available for special equations
only.

nalytical solutionof ax*+bx+c=0

log step size

http://www.pedram-payvandy.com

Graphical Illustration

= Graphical illustration are useful to provide an initial
guess to be used by other methods

—X

—Sotve e
x=e"
The root €[0,1]
root ~ 0.6

http://www.pedram-payvandy.com

http://numericalmethods.eng.usf.edu

' —b++/b? —4ac
o R A
2a

Noanalytical solutionis available for x-e™ =0

http://www.pedram-payvandy.com

Bracketing/Open Methods

= In bracketing methods, the method starts
with an interval that contains the root and a
procedure is used to obtain a smaller interval
containing the root.
Examples of bracketing methods : Bisection method

= In the open methods, the method starts with
one or more initial guess points. In each
iteration a new guess of the root is obtained.

http://www.pedram-payvandy.com
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Solution Methods

Many methods are available to solve nonlinear equations
a Bisection Method
a Newton’s Method (A
a Secant Method e amvEiEst

o Fixed point iterations
a False position Method
. Muller’s Method

. Bairstow’s Method

http://www.pedram-payvandy.com
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